
Technology Innovation Management Review May 2013

18www.timreview.ca

Rapid Prototyping
Using a Configurable Platform

Antonio Misaka

This article describes an approach for speeding up the development of web applications us-
ing a configurable platform. The core idea of the approach is that developers can implement
customer requirements by configuring platform components, instead of writing large
amounts of “glue code” to wire the components together. This approach reduces the
amount of glue code that still needs to be written and maintained, it shortens the time it
takes developers to create a prototype, and it makes it easier for glue code to be reused in
the future. It also allows developers to experiment with different configurations of platform
components in order to find the configuration that best meets the customer's requirements.
Developers are also able to manage a larger variation in customer requirements.

The only good idea is an implemented idea... that stays implemented!

William C. Byham
Entrepreneur, author, and organizational psychologist

“ ”

Introduction

Web applications are commonly assembled from a
number of existing components that are combined to-
gether to support a custom business process. These are
components such as Drupal (drupal.org) and SugarCRM
(sugarcrm.com), which provide commonly used function-
ality for content management and user-profile
management. The code that connects the components
is known as “glue code” (tinyurl.com/q3vu3hz). Because
this code is very specific to the assembled components,
it can be difficult to maintain and reuse.

This development approach can best be described as
“clone-and-own” reuse: a new application starts out by
duplicating glue code from a previous application
(tinyurl.com/pcruf2h). Code duplication causes significant
maintenance problems. If any errors are subsequently
found in the original code, they will need to be fixed in
every copy. The match between the needs of the new
and the old application is also often not perfect. The du-
plicated code often contains “orphaned” code that does
not serve any purpose in the new application.

At the same time, the applications created often only
differ in minor details, and thus much time is wasted by
developers modifying and creating glue code and learn-
ing about new component APIs (tinyurl.com/6abeyab). A
more systematic approach to selecting components
and creating glue code is called for – one that reduces
the amount of unnecessary glue code. Application de-
velopers could learn from the discipline of software
product-line engineering (tinyurl.com/ps7wyob), which is
concerned with the systematic creation of common as-
sets and methods for enabling reuse across products in
a product line. This approach is not yet used widely for
developing web applications, but the benefits of using a
software product-line engineering approach are
threefold: i) the resulting applications are more main-
tainable, ii) time is saved when developing the
application as a result of reuse, and iii) the details of us-
ing a specific component can be hidden from the
developer behind common interfaces.

Box 1 provides examples of business processes that
share many of their requirements, and could benefit
from a software product-line approach.

http://drupal.org
http://www.sugarcrm.com
http://www.doc.ic.ac.uk/~np2/patterns/scripting/glue-code.html
http://www.sei.cmu.edu/productlines/frame_report/pl_is_not.htm
http://en.wikipedia.org/wiki/Application_programming_interface
http://www.sei.cmu.edu/productlines/frame_report/what.is.a.PL.htm

Technology Innovation Management Review May 2013

19www.timreview.ca

Rapid Prototyping Using a Configurable Platform
Antonio Misaka

In order to apply the software product-line approach to
web applications, two problems need to be overcome:
i) how to reduce the amount of “glue code” required to
wire the components together, and ii) how to hide the
details of specific components from developers. The
first problem can be addressed by creating a configur-
able platform that contains the reusable components
(also known as common assets). A large part of the glue
code that would otherwise have to be created can be re-
placed by specifying a configuration of platform
components.

The second problem can be addressed by raising the
level of abstraction at which developers write code that
interacts with specific components. However, the
second problem can really be considered a subproblem
of the first one: a configurable platform would be of
little use if developers had to have detailed knowledge
of specific components.

This primary audience of this article are companies like
our hypothetical company Tickets R Us who need to
create more maintainable applications and achieve a
higher degree of reuse.

The rest of this article first offers a closer look at the
problem of raising the level of abstraction at which the
glue code interfaces with components. It then describes
the architecture of a configurable platform that in-
creases the level of abstraction at which web
applications can be built. Next, it outlines a process for
creating a configurable platform that builds on the les-
sons from software product-line engineering and early
requirements analysis. The article concludes with a dis-
cussion of managerial implications.

Raising the Level of Abstraction

Glue code that developers write to wire together com-
ponents is hard to maintain for a number of reasons.
One reason is that there is a lot of it: the more code
there is, the harder it is to maintain. The other reason is
that glue code tends to be very specific to the compon-
ents that are being assembled. On top, glue code is
likely to be “reused” in an improper manner from one
application to the next; this is the problem that we re-
ferred to earlier as clone-and-own.

Tony, Fred, and Bob are business owners with very
similar needs:

• Tony wants to run a promotion for his restaurant.
When diners pay their bill, they should also receive a
printed ticket that enters them into a draw for a
prize. At the end of the promotion period, the win-
ning ticket numbers are announced on a board in
the restaurant. Diners with a winning ticket can re-
deem it at the restaurant.

• Fred runs a construction company and wants to gen-
erate leads for his business. Potential customers can
enter their email on the company's website, and
they will be sent an email with a ticket that also
enters them into a draw for a prize. At the end of the
promotion, a winner will be selected and notified by
email. The winner can print their ticket and redeem
it by visiting the construction company's office.

• Bob is the owner of an independent bookstore and
wants to increase the loyalty among his customers.
Customers can receive a discount on future pur-
chases if they register their email on the store's
website. When customers make a purchase, they
can enter the number of their sales receipt on the
website, and they will receive a ticket worth 10% of
the money they spent, which they can redeem at
their next purchase.

Each of our three business owners approaches Tickets
R Us to develop a custom application that implements
their business processes. Traditionally, Tickets R Us
might have built an application for Tony, chosen ap-
propriate components – such as platforms for
maintaining a database of tickets, printing a barcode
on a ticket, and scanning the barcode – and wired
them together using glue code. When creating Fred's
application, Tickets R Us would have started with the
code developed for Tony, added a new feature to send
a ticket via email, and made tweaks to the existing
code. Similarly, when creating Bob's application, re-
use would be limited to a clone-and-own approach.

Box 1. Examples of business processes with similar
requirements

Technology Innovation Management Review May 2013

20www.timreview.ca

Rapid Prototyping Using a Configurable Platform
Antonio Misaka

The first part of the solution to these issues is to create a
configurable platform. When using a configurable plat-
form, developers do not need to write as much glue
code. In the next two sections, we outline an architec-
ture and process of constructing such a configurable
platform.

The second part of the solution involves raising the level
of abstraction at which developers interface with com-
ponents. If developers do not apply proper constraint,
the glue code can become very dependent on specific
details of the components used. Not only does this lead
to more complicated glue code, but it also limits the op-
portunities to replace the components with other
functionally equivalent components, should this be-
come necessary later. For example, the glue code to
send emails to customer should ideally be the same irre-
spective of which protocol is being used to access
emails.

This dependency is a well-known problem when pro-
gramming user interfaces, where the application code
and user-interface code can become tightly intertwined.
As in that case, decoupling the glue code from the com-
ponents can help create code that is significantly easier
to understand and maintain. In general, decoupling can
be achieved by defining interfaces that abstract the
functionality of components with similar functionality
into a common set of operations, and requiring de-

velopers to invoke the components only through those
operations. It is not incidental that creating such com-
mon interfaces creates a “language” that is much closer
to a business owner's model of the domain.

For example, in the Tickets R Us example, business
owners will be used to specifying the requirements for
what a ticket should show in terms of concepts such as
ticket numbers, barcodes, and expiration date. Those
concepts are a natural part of the language used by any-
one who intends to use tickets for a promotion. These
users are less likely to be familiar with expressing this
information in the format required by a particular bar-
code component. Creating these common interfaces
thus closes the “gap” that exists between how business
owners express their requirements and the way de-
velopers think about writing glue code.

Architecture of the Configurable Platform

Figure 1 shows a proposed architecture of the configur-
able platform. Users of the platform (the business
owners) are shown as subscribers on the top left. The
configuration of platform components for each applica-
tion can be specified in a configuration table. A
configuration is a list of services that can be invoked by
each application and specifies the values of configura-
tion parameters for each service. Examples of services
are Email, Login, or Ticket Generation.

Figure 1. Architecture of the configurable platform

Technology Innovation Management Review May 2013

21www.timreview.ca

Rapid Prototyping Using a Configurable Platform
Antonio Misaka

Each service provides an abstraction for platform com-
ponents with similar functionality and can be
configured through parameters. For example, whether
or not a ticket should be sent by email is a configurable
parameter of the Ticket service. If the parameter is set
to sending email, the corresponding glue code that in-
vokes the Email service will be executed. The type of
barcode to use on the ticket is another parameter that
can be specified in a configuration.

Process

This section describes a process for creating a configur-
able platform and building applications based on this
platform. The benefits of this approach are:

1. It raises the level of abstraction: Software platform
configurations are defined in the language of the
business owner (also known as the domain level), not
at the implementation level.

2. It simplifies configuration: Glue code that specifies a
selection of components and sets configurable para-
meters is easier to reuse than component-specific
code.

3. It makes reuse more systematic and efficient: Glue
code can be reused across multiple applications
through shared services, not in the form of “clone-
and-own” reuse.

A domain is an area of knowledge or expertise. It typic-
ally reflects the business owner's mental model of a
domain. In software product-line engineering, a distinc-
tion is made between domain engineering and
application engineering. Developing a platform that
contains the core assets is referred to as domain engin-
eering, and developing products from the platform is
referred to as application engineering (tinyurl.com/
p6xn7zh). Assets created during domain engineering are
reusable, whereas the assets created during application
engineering tend to be specific to a particular applica-
tion, unless they recur across applications, in which
case they should be turned into reusable assets to avoid
future duplication of work.

The requirements are captured in the form of form of
goals and expectations (goal models) and business pro-
cess descriptions (scenarios). In the research we
conducted, those models are represented in user re-
quirements notation (URN). However, for sake of the
exposition, we will not go into details of this notation
here, but refer the interested reader to the project web-

site (usecasemaps.org). For readers familiar with use cases
and the unified modeling language (UML;
tinyurl.com/anyno), we might add that URN bridges
between use cases and object models in the UML.

The process comprises five steps:

1. Modelling domain requirements

• Gather user requirements in the form of goals and ex-
pectations (goal models) and business process
descriptions (scenarios) by interviewing the business
owners.

• A goal model is created for each business owner or a
group of business owners that share the same func-
tionality. A specific key identification is created for the
configuration table.

• Links between goal models and scenarios are cap-
tured.

2. Identifying commonalities and variabilities in the
requirements model

• Identify common and variable elements in goals mod-
els and scenarios. These represent the configurable
features of the system.

• Commonalities are all those elements repeated in
each model (goal and scenario models), and variabilit-
ies are elements that are unique to a model.
Variabilities are candidates for configurable variations
in the features provided by the platform. For a vari-
ation to be supported by the platform, it must
generally occur more than once in the models.

• Identify candidate components that can provide those
features. Those components can be selected by a de-
veloper when implementing the requirements.
Identify parameters through which the components
can be configured.

3. Modelling application requirements

• Create a model application using all the necessary ele-
ments to create the configurable platform. Existing
software components, both third-party components
and internally developed components, are possible
candidates for reuse in the configurable platform. The
model should incorporate the requirements to be sat-
isfied and all functionalities expected by the
configurable software platform.

http://www.sei.cmu.edu/productlines/frame_report/terminology.htm
http://www.usecasemaps.org
http://en.wikipedia.org/wiki/Unified_Modeling_Language

Technology Innovation Management Review May 2013

22www.timreview.ca

Rapid Prototyping Using a Configurable Platform
Antonio Misaka

4. Identifying existing components

• Match components in the scenario models against the
available software components.

• Identify configuration parameters to be included in
the configuration tables.

5. Binding variabilities to components

• Develop and implement the necessary glue code to
run an application. The developer now has all the ne-
cessary information to build a prototype using the
selected set of components.

• Test the prototype and verify it with potential custom-
ers.

Box 2 provides an example of the first two steps of the
process.

Figure 2 shows how the architecture from Figure 1 was
instantiated for the Tickets R Us example (steps 3 to 5).
Note that, for purposes of illustration, some details
have been removed from the diagram.

Conclusion

If a company plans to create a series of web applications
in the same application domain, it should consider
building a configurable platform first. A configurable
platform offers two advantages over the traditional
“clone-and-own” approach: i) developers save time
when building applications with similar functionality
and can take on more projects, and ii) it raises the level
of abstraction at which web applications can be built.
The approach also reduces the translation errors de-
velopers can make when mapping high-level user
requirements to low-level application details. Creating a
configurable platform does not come without initial ex-
pense, however, but will pay off after a few applications.

Figure 2. Instantiation of the architecture for the example

Technology Innovation Management Review May 2013

23www.timreview.ca

Rapid Prototyping Using a Configurable Platform
Antonio Misaka

In the first step (modelling domain requirements),
we capture the business owner's domain
requirements in terms of their goals and business
processes. Here are samples of the requirements in
plain language:

• Tony, the restaurant owner, wants to use
promotions to get diners to return. His needs
include the ability to generate tickets, print them,
and allow winners to redeem tickets for a prize.

• Fred wants to use promotions to generate leads for
his construction company. In addition to being
able to generate tickets, he needs to be able to
collect email addresses from potential customers.

• Bob wants to increase his customers' loyalty by
giving them discounts on future purchases. He
also needs his customers to be able to enter their
sales receipts on the bookstore's website.

Note that “wants” indicate goals and “abilities”
indicate steps in a business process.

In the second step (identifying commonalities and
variabilities in the requirements model), we look for
what is common among the models and in which
ways they differ. For example:

• All business owners want to increase their sales
through promotions.

• They want to collect information about their
customers, but plan to do so in slightly different
ways (sales receipts for Tony and Bob, and email
addresses in Fred's case).

• They all need to generate tickets, but in some
cases (Tony) the tickets are generated at the point
of purchase, and in the other cases (Fred and Bob),
they are generated via a website.

• All tickets have barcodes, but there can be
different types of barcodes.

• All business owners need to allow winners to
redeem their prizes, but they use different ways of
informing winners (through a board for Tony, or
via email for the others).

From this information, we can identify common
and variable features, choose candidate
components that provide those features, and
identify configuration parameters for the
components.

Examples of common features that all business
owners require include:
• prompting users to enter data
• generating tickets
• selecting the winning tickets
• redeeming winning tickets

Examples of variable features that require different
implementations for different business owners, or
that only some business owners have asked for
include:
• supporting multiple types of barcodes on tickets
• sending emails to winners
• registering and logging in customers

Examples of candidate components include:
• PHP Barcode to create and read barcodes
• PHP Mailer and SMTP in PHP to send emails
• MyDB database framework for PHP
• Tickets R Us' own components to generate

random ticket numbers
• Tickets R Us' own components to check submitted

tickets

Examples of configuration parameters include:
• text to display on the tickets
• barcode type
• flag whether to send emails to customers
• expiry date of the promotion

Box 2. Applying the process to the Tickets R Us example (steps 1 and 2)

Technology Innovation Management Review May 2013

24www.timreview.ca

About the Author

Antonio Misaka is a recent graduate of the Techno-
logy Innovation Management program at Carleton
University in Ottawa, Canada. He is a former con-
sultant for IBM and R&D researcher for NEC-Brazil.
His research interests include software engineering
and technology management. He also holds an MSc
degree in Computer Science and Mathematics from
the University of São Paulo, Brazil.

Citation: Misaka, A. 2013. Rapid Prototyping Using a
Configurable Platform. Technology Innovation
Management Review. May 2013: 18–24.

Keywords: web applications, rapid prototyping,
configurable platform, requirements analysis, software
product-line engineering

Rapid Prototyping Using a Configurable Platform
Antonio Misaka

http://creativecommons.org/licenses/by/3.0

