o B T r—
O T T T AT

Editorial
Dru Lavigne, Michael Weiss

An Introduction to Open APIs

Mapping Mashup Ecosystems
Michael Weiss

Licensing of Open APIs
G.R. Gangadharan

Using JavaScript Toolkits to Create Rich
Internet Applications

Owen Byrne

Measuring Modularity in Open Source
Code Bases

Steven Muegge, Roberto Milev

Torys Technology Law Speaker Series:
Open Source Licenses and the
Boundaries of Knowledge Production
Byron Thom
Upcoming Events
Newsbytes

Contribute

APRIL
2009

APRIL 20095

EDITOR:

ISSN:
1913-6102

ADVISORY

PUBLISHER:
The Open Source
Business Resource is a
monthly publication of
the Talent First Network.
Archives are available at
the website:
http://www.osbr.ca

Dru Lavigne
dru@osbr.ca

BOARD:
Tony Bailetti
James Bowen
Kevin Goheen
Leslie Hawthorn
Chris Hobbs
Thomas Kunz
Steven Muegge
Donald Smith
Michael Weiss

© 2007 - 2009
Talent First Network

r

D¢

©)

OME RIGHTS RESERVEL

ribus

n Source Desktop Publishing

Dru Lavigne and Michael Weiss discuss the editorial theme of Open
APIs.

Carleton University students provide a glossary of terms associated
with Open APIs and present some resources that discuss their busi-
ness value.

Michael Weiss from Carleton University describes a research frame-
work to examine the structure of the mashup ecosystem and its
growth over time using network analysis to obtain key characteristics
of the ecosystem and identify significant ecosystem members and
their relationships.

G.R. Gangadharan, a research scientist at the Novay in the Nether-
lands, provides an overview of open API licensing, provide examples
from current open APIs, and briefly discusses open licensing of open
APIs.

Owen Byrne, Senior Manager of Travelpod Labs, compares the fea-
tures of the most commonly used JavaScript Toolkits used to create
rich Internet applications and discusses how freely available toolkits
are able to compete against proprietary alternatives.

Steven Muegge and Roberto Milev of Carleton University describe a
method for examining the evolving modularity of large-scale software
systems and introduce a new modularity metric for comparing code
bases of different size.

Byron Thom, a student at at the University of Ottawa's Faculty of Law,
summarizes a recent Torys Technology Law Speaker Series
presentation which introduced a novel interpretation of copyright in
the age of OSS using a spatial framework to deal with open source li-
censes.

Canadian open source events at a glance.

Whats new and notable in the world of open source.

13

17

21

27

30

32

34

http://creativecommons.org/licenses/by/3.0
http://www.scribus.org
http://www.osbr.ca

A few short years ago, the term "Internet"
reflected the technical savvy sitting at a
workstation reading email or using a
search engine to find data. Today, people
of all ages are using all manner of devices
to: obtain public transit directions with
Google Maps, share photos using Flickr
and videos using YouTube, Tweet their
whereabouts, meet new friends through
Facebook, and perform countless other
activities which have quickly become ubi-
quitous to every day life.

This new generation of online activities
is the result of open APIs, mashups, and
rich Internet applications. These con-
cepts are the focus of the April issue
of the OSBR. The authors have done an
excellent job of taking the editorial theme
of "Open APIs" from the mysterious
realm of programming into their
applicability to daily life and business.

As always, we encourage readers to share
articles of interest with their colleagues,
and to provide their comments either on-
line or directly to the authors. We hope
you enjoy this issue of the OSBR.

The editorial theme for the upcoming
May issue of the OSBR is "Open Source in
Government" and the guest editor will be
James Bowen from the University of
Ottawa. Contact the editor if you're
interested in a submission for this issue.

Dru Lavigne
Editor-in-Chief

dru@osbr.ca

Dru Lavigne is a technical writer and IT
consultant who has been active with open
source communities since the mid-1990s.
She writes regularly for O'Reilly an-
dDNSStuff.com and is the author of the
books BSD Hacks and The Best of FreeBSD
Basics.

EDITORIAL

Websites and applications on the Web
serve significant volumes of data. In the
past, this data was hidden behind web
pages that only humans could read. This
made it difficult for others to reuse this
data in other applications, usually in-
volving tedious and volatile web scraping.
It also required users to come to your
website to access the data, which limited
its reach.

The editorial theme of this issue, "Open
APIs", presents a recent solution to this
problem: providing an open API to your
website. The articles in this issue show
how companies can make their data more
accessible and extend their reach through
open APIs. They also discuss the issues
and techniques related to the provision
and use of open APIs.

This issue has four articles related to the
open API theme and two regular contribu-
tions. The first article, An Introduction to
Open APIs, was written collectively by the
students of a course on Web 2.0: Collect-
ive Web, which is offered as one of the
courses within the Technology Innovation
Management (TIM) program at Carleton
University. It provides an introduction to
the terminology of open APIs and
mashups, and discusses the business reas-
ons for opening an API.

The second article, Mapping Mashup
Ecosystems, by Michael Weiss of Carleton
University, takes an ecosystem perspect-
ive on mashups and open APIs. It
presents a method for mapping the
mashup ecosystem, and discusses the ma-
nagerial insights we can gain from this
analysis.

The third article, Licensing of Open APIs,
by G.R. Gangadharan at the Novay
Telematica Institute in The Netherlands,
examines a topic whose importance will
only grow with time, as open APIs and
mashups get more ingrained in the way

we develop software. It deals with the im-
portant issue of protecting the intellectu-
al property contained in open APIs. It
gives an overview of open API licensing
and provide examples from current open
APIs. It also discusses strategic issues of li-
censing open APIs.

The fourth article, Using JavaScript
Toolkits to Create Rich Internet Applica-
tions, is written by Owen Byrne, co-
founder and original developer of
digg.com, and currently Senior Manager
of Travelpod Labs in Ottawa. It discusses
the selection and use of sophisticated
JavaScript toolkits like Prototype and
jQuery, which are essential frameworks
for writing Rich Internet Applications
(RIA) and mashups. It informs us on the
importance of open source alternatives
to proprietary frameworks for construc-
ting RIAs. It also describes the author's
experience in using these toolkits in
building a meta-search application for tri-
padvisor.com.

The fifth article, Measuring Modularity
in Open Source Code Bases, by Steven
Muegge, a faculty member in the TIM
program, and Roberto Milev, a recent
graduate from the TIM program, exam-
ines how modularity evolves in open
source software systems. It provides ini-
tial evidence that as a large software sys-
tem evolves, major architectural changes
will first lead to a decrease in modularity,
and are then followed by refactoring
activities, which increase modularity.

EDITORIAL

The sixth article, Torys Technology Law
Speaker Series: Open Source Licenses and
the Boundaries of Knowledge Production,
by Byron Thom, a student at the Law
Faculty of the University of Ottawa,
summarizes a recent lecture given by
Michael Madison, Associate Dean for
Research and Professor of Law at the
University of Pittsburgh School of Law.

I hope you enjoy learning more about
this editorial theme as much as we en-
joyed putting this issue together. Please
feel free to contact the authors or the edit-
ors for questions, insights, or comments
on this important topic.

Michael Weiss

Guest Editor

Michael Weiss holds a faculty appoint-
ment in the Department of Systems and
Computer Engineering at Carleton Uni-
versity, and is a member of the Technology
Innovation Management program. His re-
search interests include open source ecosys-
tems, mashups/Web 2.0, business process
modeling, social network analysis, and
product architecture and design. Michael
has published on the evolution of open
source communities, licensing of open ser-
vices and the innovation in the mashup
ecosystem.

"The API has been arguably the most im-
portant [...] thing we've done with Twitter.
It has allowed us, first of all, to keep the
service very simple and create a simple
API so that developers can build on top of
our infrastructure and come up with ideas
that are way better than our ideas, and
build things like Twitterrific, which is just
a beautiful elegant way to use Twitter that
we wouldn’t have been able to get to, being
a very small team."
Biz Stone, co-founder of Twitter

http://www.readwriteweb.com/archives/

twitter_open_platform_advantage.php

This article provides a glossary of terms
associated with open APIs which can
serve as an introduction to the other art-
icles in this issue of the OSBR. We then
discuss the business opportunities that
can be created through an open API and
provide video and text resources which
present further thoughts on the business
value inherent in open APIs.

Glossary of Terms

Here we present definitions for the most
commonly used terms associated with
open APIs.

AJAX: asynchronous JavaScript and XML.
Enables updates to a web page without
requiring the browser to reload the page.
The rationale behind AJAX is that often
only a small portion of the web page
changes. Web pages using AJAX are
significantly more responsive than pages
that do not.

API: application programming interface.
Wikipedia defines an API as "a set of
routines, data structures, object classes
and/or protocols provided by libraries
and/or operating system services in or-
der to support the building of applica-
tions" (http://en.wikipedia.org/wiki/Api).

INTRODUCTION TO OPEN APIS

Collective intelligence: collective intelli-
gence is the information and insights
that can be extracted from the collective
set of interactions and contributions
made by a user community, and the use
of this intelligence to act as a filter for
what is valuable to the users. Collective
intelligence emerges from user-contrib-
uted content and the process of sense-
making.

Generativity: the capacity of a system to
produce unanticipated changes through
unfiltered contributions from broad and
varied audiences. Technological gener-
ativity describes the quality of the Inter-
net that allows people unrelated to
vendors to produce content in the form
of applications through mashups and
user-contributed content in the form of
wikis and blogs. The first generation of
the Internet was a non-generative system
whose content was controlled by a small
number of parties. With Web 2.0 techno-
logies and practices, the generative po-
tential of Web has reemerged, allowing
users to participate and collaborate in
the creation of its content.

Mashup: mashups combine data and ser-
vices provided by third parties through
open APIs, such as Google Maps and
Flickr, as well as internal data sources
owned by users. Mashups are an example
of recombinant innovation. Mashups can
be implemented directly within the client
browser or on a server. Client-side
mashups often access open APIs through
AJAX. Wikipedia describes and provides
examples of different types of mashups
(http://en.wikipedia.org/wiki/Mashup_
(web_application_hybrid)).

Network effect: network effects, also
known as network externalities, occur
when the value of a good, service or a
shared resource is affected by the num-
ber of its users. Network effects can be
positive when the value of the good
increases with the number of users.

http://www.readwriteweb.com/archives/twitter_open_platform_advantage.php
http://en.wikipedia.org/wiki/Api
http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

An example of a positive network effect is
seen when more people use a type of
credit card, causing more merchants to
accept it. Network effect can also be neg-
ative when the value decreases as the
number of users increase. A highway,
jammed with cars reduces its value to
each commuter as traffic slows, is an ex-
ample of a negative network effect.

Open API: an open API gives users access
to the open content data or services of an
information technology (IT) platform. A
well-known example is the Google Maps
API which generates maps for a given loc-
ation, and its output can be combined
with other data and services into
mashups. Open APIs provide users with
an innovation toolkit in the sense of the
user innovation paradigm. The p2p
Foundation (http://p2pfoundation.net/

Open_API) provides a further discussion
on the importance of open APIs.

Open content: one of the defining charac-
teristics of Web 2s openness. Open
content is published in a format that ex-
plicitly allows copying and modification.
The Creative Commons (http://creative
commons.org/) provides a choice of li-
censes which are often used to describe
the rights associated with open content.

Recombinant innovation: describes a
view of innovation as a process through
which new ideas emerge as the combina-
tion of existing ideas. This process can
shorten the learning curve as it combines
known elements in novel ways. Recom-
binant innovation allows innovators to
share past experience and provides a di-
versity of problem solving frames.

Sensemaking: the capacity for making
sense of complex sets of information dur-
ing a situation in which new problems,
opportunities, or tasks present them-
selves, or old ones resurface. Sensemak-
ing aims to help people act in an
informed and effective manner.

INTRODUCTION TO OPEN APIS

Mashups and other Web 2.0 technologies
support the sensemaking process by en-
abling collaboration, visualization, and
casual interaction with data sources
through which users can gain insights in-
to the structure and interpretation of the
data.

User-contributed content: Web 2.0 prac-
tices and technologies have empowered
users to participate and collaborate in
the creation of content. This content cre-
ated by users is the basis for the existence
of social networking websites and
portals. Similarly, websites like Flickr and
YouTube primarily depend upon user up-
loaded content and provide a framework
to categorize the content using user-gen-
erated tags. Contributions such as pho-
tos, reviews, ratings, and lists of friends
are considered to be active. Contribu-
tions in the form of behavioural data
such as clickstreams, page views, and pur-
chases as well as resources such as com-
puting capacity are considered to be
passive.

User innovation: traditionally, product
development has been company-centric.
In this model, the interface to the cus-
tomer is the product prototype and feed-
back on how well customer needs are
being met is obtained late in the product
development cycle. In user innovation
(http://en.wikipedia.org/wiki/User_inno
vation), the locus of innovation shifts
from the company to the customer. The
new interface to the customer is now a
solution platform that customers can ad-
apt to their needs using innovation
toolkits. Open APIs can be considered in-
novation toolkits.

Web 2.0: a phenomemon that forms the
basis of the next generation of the Inter-
net and that manifests itself in terms of
user-contributed content, openness as
seen in open APIs and open content, and
network effects.

http://p2pfoundation.net/Open_API
http://creativecommons.org/
http://en.wikipedia.org/wiki/User_innovation

Web scraping: an approach to extract
structured information from websites
that do not offer an open API to provide
data access. An API to a website created
through web scraping is also known as an
implicit API. An example of web scraping
is HousingMaps (http://housingmaps.
com), the first Google Maps mashup
which mixed data from Craigslist with
Google's maps. At the time, neither
Craigslist or Google Maps provided an
open API to their services, so the creator
of HousingMaps had to resort to web
scraping to extract the data from these
sites.

Widgets: also known as gadgets, these are
small, reusable components that allow
content from multiple sources to be eas-
ily integrated into websites without pro-
gramming. For example, a widget can
provide access to a user's Twitter feeds on
her home page (http://widgetbox.com/
widget/twidget). The term widget can be
used to refer to a mashup that composes
only one open API. Most early mashups
were widgets, and widgets continue to
represent a significant percentage of
mashups. To integrate a widget into your
website, you only need to paste an URL
or a piece of JavaScript into the HTML
code of your page.

Importance of Open APIs

As mentioned in the introductory quote
by Twitter co-founder Biz Stone, opening
an API to an application creates oppor-
tunities for external innovation. Giving
third-party developers programmatic ac-
cess to an application allows them to add
value in unanticipated ways, and adds re-
sources to your development effort that
you would not otherwise have access to.
You can thus tap into the long tail (http://
en.wikipedia.org/wiki/The_Long Tail) of
underserved users who write their own
applications to meet their specific needs,
if given the opportunity.

INTRODUCTION TO OPEN APIS

With external development, the risk of de-
velopment is carried by others, but you
can nonetheless reap the benefits from
successful innovations. This is what
Google does when it gives users access to
its vast computing infrastructure when
providing such services as Google Maps,
or any of its other (http://www.pro
grammableweb.com/apitag/?q=google
&sort=date).

When you open an API, follow estab-
lished standards where they exist.
Jakob's law (http://www.useit.com/alert
box/20000723.html) implies that the
largest opportunity to increase site traffic
is to give users an easy way of integrating
your content into their sites. This can
take the form of a widget or an open API
which other developers can use to build
widgets and mashups that leverage your
API. Increased traffic provides opportun-
itles to monetize your application
through other avenues, such as advert-
ising.

If your application or service collects in-
formation from users, such as photos or
profiles, users expect to get access to
their information through an open APL
They don't want to be locked into a par-
ticular service, and will base their de-
cision on which service to use, in part, on
the existence of an open API.

The glossary definitions were contributed
by the students of the SYSC 5801 course on
Web 2.0: Collective Web (http://www.sce.
carleton.calfaculty/weiss/courses/SYSC58
01/SYSC%205801%200utline.pdf), a gra-
duate course taught in the TIM program.
This glossary will be part of a wiki book
on Web 2.0 that the students have written
collectively.

http://www.programmableweb.com/apitag/?q=google&sort=date
http://www.useit.com/alertbox/20000723.html
http://www.sce.carleton.ca/faculty/weiss/courses/SYSC5801/SYSC%205801%20Outline.pdf
http://www.housingmaps.com/
http://www.widgetbox.com/widget/twidget
http://en.wikipedia.org/wiki/The_Long_Tail

MAPPING MASHUP ECOSYSTEMS

"A key advantage of the advent of open
APIs is that many people can simultan-
eously tackle a particular problem by
working on their own version of a
mashup."
Palfrey & Gasser
http://cyber.law.harvard.edu/interop/
pdfs/interop-mashups.pdf

Mashups enable users to “mix and
match” data and user interface elements
from different online information
sources to create new applications
(http://ieeexplore.ieee.org/xpl/freeabs_
all.jsp?arnumber=4620093). The creation
of mashups is supported by a complex
ecosystem of interconnected data pro-
viders, mashup platforms, and users. In
our recent research, we examined the
structure of the mashup ecosystem and
its growth over time. The main contribu-
tion of our research is a method for the
analysis of mashup ecosystems. Its nov-
elty lies in the development of tech-
niques for mapping the mashup
ecosystem, and the use of network ana-
lysis to obtain key characteristics of the
ecosystem and identify significant ecosys-
tem members and their relationships. In
this paper, we summarize the key steps of
our analysis method, describe the mem-
bers of the mashup ecosystem, and dis-
cuss the managerial implications of our
analysis.

Mapping the Mashup Ecosystem

There are many public sources that
provide information about open APIs,
mashups, and associated platforms. One
source, ProgrammableWeb.com, lists
APIs and mashups by date of introduc-
tion, and provides a profile of each. It
also categorizes APIs and mashups
through a provided taxonomy and
through tags that users can associate
with the entries. In addition, the site
provides information on mashup tools.

Since the contents of the site are user-
contributed, not all APIs and mashups in
existence are indexed. However, the

ProgrammableWeb is probably the most
widely recognized mashup directory, and
its contents can be considered represent-
ative of the state of the mashup ecosys-
tem. Thus, while our analysis is likely to
underestimate the total size of the
mashup ecosystem, it can be expected to
accurately represent the relations
between ecosystem members.

First, we extracted time-stamped inform-
ation on when APIs were introduced and
when mashups were created. Next, we
captured the relationships between
mashups and APIs in an affiliation net-
work. Originally developed for represent-
ing teams and their membership by Uzzi
et al. (http://www.kellogg.northwestern.
edu/faculty/uzzi/ftp/Uzzi_European
ManReview_2007.pdf), the links in the af-
filiation network for the mashup ecosys-
tem indicate which APIs are used in
which mashups. Affiliation networks lend
themselves to a visual analysis of the net-
work data and many relationships only
become apparent by visualization. Visual
observations then direct the further ana-
lysis as to what aspects of the network to
study.

Figure 1 shows a snapshot of the mashup
ecosystem using data based on the first
month of records on the Program-
mableWeb site. Only the names of APIs
are shown to keep the diagram readable,
mashups are shown as unnamed nodes,
and a link between a mashup and an API
indicates that the mashup uses the APIL
Even at this early stage, some of the most
well-known open APIs are already prom-
inently positioned in the network. We
find Google Maps at the center and other
prominent APIs, such as Flickr, Amazon,
Yahoo Maps and del.icio.us, along the
first ring around the center.

http://cyber.law.harvard.edu/interop/pdfs/interop-mashups.pdf
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4620093
http://www.programmableweb.com/
http://www.kellogg.northwestern.edu/faculty/uzzi/ftp/Uzzi_EuropeanManReview_2007.pdf

MAPPING MASHUP ECOSYSTEMS

Named nodes at the periphery of the
graph represent APIs that have been used
less frequently. Similarly, there are many
one-feature mashups, also known as wid-
gets or badges, that combine only one ex-
ternal API with internal data.

Members of the Mashup Ecosystem
Initially, there were two types of

members within the mashup ecosystem:
i) data providers that release open APIs,

Figure 1: Snapshot of Mashup Ecosystem

such as Flickr or Google; and ii) users and
developers creating mashups. The only
way for users to create mashups was by
manually combining open APIs exposed
by data providers. In some cases, data
providers aggregate the data offered by
other providers. For example, Google
Maps obtains its raw map data from a
number of geographic data services. Ac-
cess to those data providers is often not
directly accessible through open APIs, so
an API such as Google Maps is not itself a
mashup.

] 4115¢nc
009
) s
nfugmug]
(CoogleAdWords) 000U

=]

Bloglines

Y ol

MAPPING MASHUP ECOSYSTEMS

Somewhat surprisingly, there are only a
few mashups that offer their own APIs.
We believe that the rationale for this is a
combination of licensing issues and busi-
ness reasons.

Open APIs and Mashups

Throughout the observation period, the
data shows a consistent growth in the
number of open APIs and mashups. Each
day on average 0.70 new APIs were
defined, from which users created an av-
erage of 3.10 mashups each day. On aver-
age, there are 4.41 mashups to each APIL.
Such linear growth was also observed in
other types of networks such as collabora-
tion networks (http://arxiv.org/abs/cond-
mat/0104162/). However, the distribution
of mashups over APIs is far from uniform,
following a power law with a characterist-
ic “long tail” (http://en.wikipedia.org/
wiki/The_Long Tail). Some APIs enjoy
significantly greater popularity than oth-
ers.

One explanation for the long tail is com-
petition between APIs that offer the same
type of service. For example, multiple
APIs provide map services such as Google
Maps, Yahoo Maps and Microsoft’s Virtu-
al Earth. Choice requires user selection,
and users will initially prefer some APIs
over others. The more they select one
API, the more likely it will be selected in
the future. The result is that, eventually,
one API will be significantly more popu-
lar than others. However, it also implies
that a small number of APIs, the key-
stones of the ecosystem (http://william
kuo.bokee.com/inc/HBR-Strategy_as_
Ecology.pdf), provide the basis for the
majority of mashups, and all other APIs
are only used in certain application
niches.

Complementary Nature of APIs

Open APIs are the components of
mashups, and as such provide value to

10

users by themselves. However, their value
increases when other data providers offer
complementary APIs that extend their
functionality or allow them to be used in
new contexts. For example, Flickr com-
plements Google Maps, because it allows
images about a given location to be
shown on a map. In fact, the combination
of these services was so compelling that
both Flickr and Google decided to offer
new services to show images on a map.
APIs that have many complementary
APIs are more attractive to users, and will
be selected more often for inclusion in a
new mashup.

Starting from the affiliation network that
shows how APIs are used by mashups, we
created a network that shows just the
APIs, with links indicating which APIs are
used together in a mashup. The network
has a core that consists of a small num-
ber of highly connected APIs that are
used by many mashups, and more spe-
cialized APIs that are linked to the core.
The nodes in the core of the network are
APIs which attract keystone data pro-
viders as well as niche data providers as
complementors. In part, this is certainly
due to an accumulation of coordination
knowledge. As APIs are used together,
users build up an experience base on
how to integrate them, making those APIs
more popular.

Mashup Platforms

As the number of APIs, and thus the com-
plexity of selecting mashups and the
value perceived by businesses of creating
mashups increased, platform providers
entered the ecosystem to fill the void. Ini-
tially, these were graphical tools, such as
QEDWiki from IBM (http://services.alpha
works.ibm.com/graduated/qedwiki.
html), to simplify the composition of
APIs into mashups. Platform providers
also quickly started to offer marketplaces
for APIs and mashups.

http://arxiv.org/abs/cond-mat/0104162/
http://en.wikipedia.org/wiki/The_Long_Tail
http://williamkuo.bokee.com/inc/HBR-Strategy_as_Ecology.pdf
http://services.alphaworks.ibm.com/graduated/qedwiki.html

MAPPING MASHUP ECOSYSTEMS

At present, there is no leading platform
provider, nor a leading marketplace that
could serve all user needs. We examined
the increase in the complexity of
mashups, measured as the average num-
ber of APIs combined in a mashup, and
plotted it against the timing of the intro-
duction of mashup platforms.

The first set of platforms included librar-
ies, such as the Yahoo! User Interface Lib-
rary (YUI, http://developer.yahoo.com/
yui/), and templates such as those
provided by the Ning social networking
site (http://www.ning.com/). Later, the
first hosted sites for mashups were intro-
duced, such as Coghead (http://www.
coghead.com/). The first platform that
can be considered a mashup composer,
DataMashups.com, was also released
around that time, as was the first plat-
form, Dapper (http://www.dapper.net/),
for extracting implicit APIs from web
sites. Almost two years after the publica-
tion of the first mashup, there was a
flurry of releases of mashup composers,
including the now defunct Teglo and
QEDwiki as well as Yahoo! Pipes (http://
pipes.yahoo.com/). Many of these com-
posers also integrated interfaces to
search for known APIs and to integrate
them into a mashup.

We find that mashup platforms have in-
creased in sophistication, from early host-
ing for mashups and screen scraping
tools to more recent graphical mashup
composers, in response to the increasing
complexity of mashups and the needs of
enterprise users. One of the major shifts
has been in the types of mashups cre-
ated: from one-feature mashups to
mashups that combine multiple open
APIs and internal data sources. The latter
type of application requires more ad-
vanced tools.

11

Managerial Implications

The managerial implications encompass
three areas related to the creation of
mashups and the development of open
APIs: i) selection of APIs; ii) introduction
of new APIs; and iii) composition of APIs
into mashups.

First, our research suggests that the posi-
tion of a data provider in the mashup eco-
system affects the likelihood of their API
being incorporated into a mashup. The
number of mashups using a given APl is a
first indicator of how likely an API will be
selected as the basis of a new mashup.
For users, the popularity of an API is a sig-
nal of its quality. When users select an
API, they will give preference to more
widely used APIs. But popularity alone
does not fully explain the how APIs are se-
lected, except where a mashup consists
of exactly one APIL. In all other cases, the
number of interactions with other APIs
also plays into the decision to select a giv-
en APL

The frequency with which APIs are com-
bined in a mashup is an indicator of how
likely they will be combined in future
mashups. We observed that the positions
of data providers in the mashup ecosys-
tem are mutually reinforcing. One factor
we would like to offer as an explanation is
that when APIs are used together, signific-
ant experience on how to integrate these
APIs is obtained. This, in turn, leads de-
velopers to prefer proven combinations
of APIs when developing new mashups.
Another likely factor is that mashups, as
the literature on the role of imitation in
innovation leads us to conclude
(http://mackcenter.wharton.upenn.edu/
Research%20Papers/ethiraj4.pdf), are de-
veloped by emulating existing mashups.
In our research to date, we have not stud-
ied the impact of copying or cloning
mashups on the mashup ecosystem.

http://developer.yahoo.com/yui/
http://www.ning.com/
http://www.coghead.com/
http://datamashups.com
http://www.dapper.net/
http://pipes.yahoo.com/
http://mackcenter.wharton.upenn.edu/Research%20Papers/ethiraj4.pdf

MAPPING MASHUP ECOSYSTEMS

This has implications for wusers of
mashups and data providers. Users will
select APIs based on how many other
mashups use a given API, as well as the
collective experience in using a given API
with other APIs to be selected for the
mashup. Data providers, when introdu-
cing a new API, will benefit from ensur-
ing that their API integrates well with
existing APIs that are strongly positioned
in the mashup ecosystem. Data providers
should look for opportunities to comple-
ment existing APIs. By complementing,
the new API will also benefit the provider
of the existing API by providing addition-
al contexts of use and increasing its po-
tential share of mashups that use it. In
order to identify potential niches to enter,
data providers need to gain a good under-
standing of the structure of the current
ecosystem. Mapping the mashup ecosys-
tem offers key insights for introducing
your own API or mashup.

Second, our analysis suggests that the
complexity of mashups drives the devel-
opment of mashup platforms. The design
of more complex mashups requires more
sophisticated platforms. This coincides
with the increasing interest in enterprise
applications of mashups, which may it-
self be a major contributor to higher com-
plexity. Platform providers need to
introduce tools that help manage this
complexity. Complexity introduces chal-
lenges in searching for APIs, enforcing
design rules during the composition of
APIs, and certification of APIs. The selec-
tion of APIs turns into a problem of find-
ing the right combination of APIs for a
given purpose. Enforcing design rules re-
quires a codification of integration experi-
ence so it can, at least partially, be
automated by a tool. Finally, APIs need to
be certified in terms of meeting quality
standards.

12

Conclusion

We have described an approach to map
the structure of the mashup ecosystem
and its growth over time. The approach
uses visualization to show the relation-
ships between APIs and mashups, and
subsequently uses network analysis to ob-
tain key characteristics of the ecosystem
and identify significant ecosystem mem-
bers and their relationships. We also dis-
cussed the managerial implications of
our analysis for data providers, mashup
developers, and developers of tools or
platforms for the development of
mashups.

Future work includes answering the ques-
tion what laws underlie the growth of the
mashup ecosystem and the mechanisms
of the creation of mashups. Due to avail-
ability of rich data about its structure and
growth, the mashup ecosystem gives us a
glimpse at innovation processes. We be-
lieve that results from the examination of
the mashup ecosystem can also shed
light on the nature of innovation and of
ecosystems in general.

Michael Weiss holds a faculty appoint-
ment in the Department of Systems and
Computer Engineering at Carleton Uni-
versity, and is a member of the Technology
Innovation Management program. His re-
search interests include open source eco-
systems, mashups/Web 2.0, business
process modeling, social network analysis,
and product architecture and design. Mi-
chael has published on the evolution of
open source communities, licensing of
open services and the innovation in the
mashup ecosystem.

"I'd always rather err on the side of open-
ness. But there's a difference between op-
timum and maximum openness, and
fixing that boundary is a judgment call.
The art of leadership is knowing how
much information you're going to pass on
-- to keep people motivated and to be as
honest, as upfront, as you can. But, boy,

there really are limits to that."
Warren Bennis
http://en.wikipedia.org/wiki/
Warren_Bennis

Two current trends in software develop-
ment are the open source paradigm and
the notion of software as a service. The
combination of these has lead to the
concept of open APIs and mashups.
Since late 2005, there has been a rapid
proliferation of applications, referred to
as mashups, that combine data and ser-
vices provided by third parties through
open APIs with data sources owned by
users. Open APIs give users access to the
data or services of an information techno-
logy (IT) platform. A well-known example
is the Google Maps API (http://code.
google.com/apis/maps) which generates
maps for a given location, whose output
can be combined with other data and ser-
vices into mashups.

Combining services and data from mul-
tiple sources raises several issues related
to intellectual rights in mashups.
However, the concept of mashups is cur-
rently in a nascent stage, and service and
data providers often underestimate the
relevance of these issues. In this paper we
give an overview of open API licensing
and provide examples from current open
APIs. We then briefly discuss licensing of
open APIs.

Objectives of an Open API License

The objectives of an open API license are
similar to the objectives of a software li-
cense. These objectives can be summar-
ized as follows:

13

LICENSING OF OPEN APIS

1. To define the extent to which the API
can be used without constituting an
infringement.

2.To have a remedy against the con-
sumer for complaints which do not
constitute an infringement of copy-
rights.

3. To limit the liability of API providers in
case of failure of the API.

Anatomy of an Open API License

In this section we describe the anatomy
of an open API license. We do not claim
that the given anatomy is complete as it
is almost impossible to generalize all the
terms of a license. Furthermore, this art-
icle is not intended as a substitute for leg-
al advice and we highly recommend
service providers and service consumers
to obtain appropriate legal counsel to
make use of licenses for their open APIs.

1. Subject: the subject of the license
relates to the definition of the open API
being licensed. It defines some related
information about the open API and
may include a unique identification
code for the API, name, and other
relevant information.

2. Scope of Rights: the following rights in
an open API allowing extraction and re-
utilization of the whole or a substantial
part of services and data:

e usage: indicates a set of methods in
which the service and data can be
consumed

ereuse: indicates a set of operationsin
which the service and data, or portions
of it, can be re-utilised

» transfer: indicates a set of procedures in
which the rights over the service and
data can be used

http://en.wikipedia.org/wiki/Warren_Bennis
http://code.google.com/apis/maps/

The scope of rights of an open API license
reflect what can be done with the open
APIL. For example, the clauses of the
Google Maps API terms (http://code.goo
gle.com/apis/maps/terms.html) include
the following:

"If you develop a Maps API Implementa-
tion for use by other users, you must:

(a) display to the users of your Maps API
Implementation the link to Google's
Terms of Use as presented through the
Service or described in the Maps APIs
Documentation;

(b) explicitly state in your Maps API Im-
plementation's terms of use that, by us-
ing your Maps API Implementation, your
users are agreeing to be bound by
Google's Terms of Use;"

3. Attribution: copyright law refers to at-
tribution as the requirement to acknow-
ledge or credit the author of a work which
is used or appears in another work. Attri-
bution signifies a decent sign of respect
to acknowledge the creator.

Flickr requires the following attribution
terms (http://www.flickr.com/services/
api/tos/):

"You shall place the following notice
prominently on your application: "This
product uses the Flickr API but is not en-
dorsed or certified by Flickr.""

4. Non-Commercial use: commercial
uses and non-commercial uses are differ-
entiated by Flickr as follows:

"Flickr is committed to free and open ac-
cess to our APIs for commercial and non-
commercial purposes. However, provid-
ing the APIs does have real costs for
Flickr. For uses of Flickr APIs over a cer-
tain rate or for certain types of commer-
cial applications, Flickr reserves the right

14

LICENSING OF OPEN APIS

to charge fees for future use of or access
to the Flickr APIs."

5. Information Rights: the rights over the
data created or modified by an open API
based on the input from consumers is
owned by the consumers. However, API
providers can transfer such information
to third parties.

These are some of the clauses defining in-
formation rights provided by the Google
Friend Connect APIs (http://code.google.
com/apis/friendconnect/terms.html):

"You agree that Google may transfer and
disclose to third parties personally identi-
fiable information about you for the pur-
pose of approving and enabling your use
of the Services, including to third parties
that reside in jurisdictions with less re-
strictive data laws than your own.

Google may share non-personally-identi-
fiable information about you, including
Web site URLs, site-specific statistics, and
similar information collected by Google,
with advertisers, business partners, spon-
sors, and other third parties. In addition,
you grant Google the right to access, in-
dex and cache your Web sites, or any por-
tion thereof, including by automated
means including Web spiders or crawl-

€rs.

6. Financial Terms: often, open APIs are
charged on a pay-per-use or transaction
base. This transaction-based model al-
lows API providers to charge for each use,
as the license defines the term “use.” The
use of the API can be continuously recor-
ded and monitored by service manage-
ment systems. This model of pricing is
quite similar to charging for utilities like
electricity and water.

Subscription is an alternative financial
model that allows consumers to purchase
the open API based services for a fixed

http://code.google.com/apis/maps/terms.html
http://www.flickr.com/services/api/tos/
http://code.google.com/apis/friendconnect/terms.html

term, during which time they automatic-
ally receive full support from service pro-
viders including any upgrades or feature
enhancements.

This is a subset of the clauses of the finan-
cial terms of Amazon web services
(http://aws.amazon.com/agreement/):

"In consideration of your use of any of
the Paid Services, you agree to pay applic-
able fees for Paid Services in the amounts
set forth on the respective Service detail
pages on the AWS Website (including any
minimum subscription fees). You are re-
sponsible for any fees assessed by
Amazon Payments for transactions that
you submit to the Payment Service using
Amazon FPS. Fees for any new Service or
new Service feature will be effective upon
posting by us on the AWS Website for the
applicable Service."

7. Warranty: in general, an open API is li-
censed by the licensor “as is" and without
any warranty of any kind, either express
or implied, whether of title, of accuracy,
of the presence or absence of errors, of fit-
ness for purpose, or otherwise.

These are the some of the warranty
clauses of the Google Maps API (http://
code.google.com/apis/maps/terms.html):

"YOU EXPRESSLY UNDERSTAND AND
AGREE THAT YOUR USE OF THE SER-
VICE AND THE CONTENT IS AT YOUR
SOLE RISK AND THAT THE SERVICE
AND THE CONTENT ARE PROVIDED "AS
IS" AND "AS AVAILABLE."

ANY CONTENT OBTAINED THROUGH
THE USE OF THE GOOGLE SERVICES IS
DONE AT YOUR OWN DISCRETION AND
RISK AND YOU WILL BE SOLELY RE-
SPONSIBLE FOR ANY DAMAGE TO YOUR
COMPUTER SYSTEM OR OTHER
DEVICE, LOSS OF DATA, OR ANY OTHER
DAMAGE OR INJURY THAT RESULTS

15

LICENSING OF OPEN APIS

FROM THE DOWNLOAD OR USE OF
ANY SUCH CONTENT."

8. Limitation of Liability: limitation of li-
ability clauses limit the liability of the li-
censor and the licensee under the license
agreement. Under this clause, both
parties disclaim liability for unforesee-
able damages, such as network errors or
hosting server problems, or indirect dam-
ages. Limitation of liability clauses often
include a ceiling for monetary liability.

The limitation of liability clause of Flickr
is as follows (http://www.flickr.com/
services/api/tos/):

"FLICKR SHALL NOT, UNDER ANY CIR-
CUMSTANCES, BE LIABLE TO YOU FOR
ANY INDIRECT, INCIDENTAL, CON-
SEQUENTIAL, SPECIAL OR EXEMPLARY
DAMAGES ARISING OUT OF OR IN CON-
NECTION WITH USE OF THE FLICKR
APIS, WHETHER BASED ON BREACH OF
CONTRACT, BREACH OF WARRANTY,
TORT (INCLUDING NEGLIGENCE,
PRODUCT LIABILITY OR OTHERWISE),
OR ANY OTHER PECUNIARY LOSS,
WHETHER OR NOT FLICKR HAS BEEN
ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES. UNDER NO CIRCUM-
STANCES SHALL FLICKR BE LIABLE TO
YOU FOR ANY AMOUNT."

Conclusion and Future

Licenses for open APIs reflect the differ-
ences between traditional software and
web services as they govern the execu-
tion, reuse and composition of services
and data exposed by third-party systems.
It is common for API providers to offer
some of their APIs for free and others for
pay. A provider can even use separate
terms for the same API by offering differ-
ent licenses for high-end and low-end
versions of the service provided by the
APIL.

http://aws.amazon.com/agreement/
http://code.google.com/apis/maps/terms.html
http://www.flickr.com/services/api/tos/

The common ways for a provider to im-
pose constraints on the execution of a
service include limiting requests, results,
and quality.

In the future, we believe that more open
APIs will begin to be licensed using open
source licenses. While the source code of
the interface of an open API is always
available, open sourcing an open API
makes the source code of the API imple-
mentation available in addition to the
source of its interface. In this case, users
would be able to modify an API, or derive
new APIs from an open APIL. However, in
order to avoid license forking, providers
would like to prevent the new open API
from being licensed differently from the
parent APL In this way, the value added
by the changes can be returned to the
community of users of the parent API.

At present, very few open APIs fit the de-
scription of being open sourced. One ex-
ample is WikiDot (http://wikidot.com), a
wiki service with an open API that is li-
censed under the GNU Affero General
Public License (http://www.fsf.org/licens
ing/licenses/agpl-3.0.html). We expect
more open APIs to be available under an
open source license in the near future.

16

LICENSING OF OPEN APIS

Dr. G.R. Gangadharan is a research scient-
ist at the Novay (Telematica Institute), En-
schede, The Netherlands. His research
interests are mainly located on the inter-
face between the technological perspective
and the business perspective. His research
interests include Service Oriented Comput-
ing, Internet Software Engineering, Intel-
lectual Property Rights, Free and Open
Source Systems, and Business Models for
Software and Services.

Recommended Reading

Analyzing Software Licenses in Open
Architecture Software Systems
http://www.ics.uci.edu/~wscacchi/Papers
/New/ICSE2009-FLOSS-Workshop.pdf

Mashup Arts Licensing Terms
http://www.mashuparts.com/licensing/

At Mashup Camp, Geeks Plot Future of
Web
http://news.zdnet.com/2100-3513
_22-150920.html

http://www.wikidot.com/
http://www.fsf.org/licensing/licenses/agpl-3.0.html
http://www.ics.uci.edu/~wscacchi/Papers/New/ICSE2009-FLOSS-Workshop.pdf
http://www.mashuparts.com/licensing/
http://news.zdnet.com/2100-3513_22-150920.html

USING JAVASCRIPT TOOLKITS TO CREATE RIAS

"A rich Internet application combines the
benefits of using the Web as a low-cost de-
ployment model with a rich user experi-
ence that’s at least as good as today’s
desktop applications. And, since RIAs
don'’t require that the entire page be re-
freshed to update their data, the response
time is much faster and the network load
much lower. Think of a globally available
client/server application."

http://flexblog.faratasystems.com/?p=163

Since 2004, the number of Rich Internet
Applications (RIAs, http://en.wikipedia.
org/wiki/Rich_Internet_application) has
increased, making them a key compon-
ent of the Web 2.0 phenomenon. Many
RIAs have been developed using JavaS-
cript (JS) and AJAX (Asynchronous JavaS-
cript And XML). AJAX is used to access
remote data sources, that reside on the
server or are available through an open
API, directly from within the application.
The rich variety of applications would
not be available today without the con-
current appearance of many powerful
JavaScript toolkits that have taken the de-
velopment of these applications from la-
bour-intensive to nearly painless. These
toolkits provide an open source alternat-
ive to the proprietary products developed
by Adobe (Flash/Flex/Air) and Microsoft
(Silverlight).

This article provides two examples that
demonstrate the evolution of RIAs, then
compares the features of the most com-
monly used JavaScript Toolkits used to
create RIAs. We then discuss how freely
available toolkits are able to compete
against proprietary alternatives. Finally,
we provide some concluding remarks
based on our experience with creating en-
terprise RIAs.

Evolution of RIAs

We have been involved in the rise of RIAs
right from the beginning. At digg.com, we

17

adopted AJAX before the acronym was
created, when it was basically referred to
by the much less friendly acronym
XMLHTTP. One of the early features that
drove a lot of traffic to digg was “Digg
Spy”. Originally developed in February
2005 with JavaScript, it was greatly en-
hanced in July 2005 via the use of a
couple of the first JavaScript toolkits to
appear: Prototype (http://prototypejs.
org) and Scriptaculous (http://en.wikiped
ia.org/wiki/Scriptaculous). Digg Spy
provided a near real time view of activity
on the site without resorting to the meta-
refresh technique in common use at the
time. What was innovative then can now
be seen all over the Web, most noticeably
at sports sites such as espn.com and
nfl.com. These sites were the largest users
of the clunky meta-refresh approach, and
have since heavily invested in AJAX.

Several years later at tripadvisor.com, I
was deeply involved in the development
of TripAdvisor Flights, a meta search
product for travel planning with a huge
interactive front-end component, de-
veloped using jQuery (http://en.wikiped
ia.org/wiki/Jquery) and Prototype. The
evolution of JavaScript toolkits over the
past four years has been astounding, and
can be seen clearly when contrasting
these two products. It's interesting to
note that the original Digg Spy was re-
tired recently in favour of the proprietary
Adobe Flash product, and that had more
to do with an Adobe sponsorship of the
product than technical merit.

JavaScript Toolkits

The sheer number of JS toolkits can be
confusing to the uninitiated. In addition
to technical considerations, issues such
as licenses, modularity, and support
should be considered.

http://flexblog.faratasystems.com/?p=163
http://en.wikipedia.org/wiki/Rich_Internet_application
http://www.prototypejs.org/
http://en.wikipedia.org/wiki/Scriptaculous
http://espn.com
http://nfl.com
http://en.wikipedia.org/wiki/Jquery
http://digg.com
http://tripadvisor.com

USING JAVASCRIPT TOOLKITS TO CREATE RIAS

We discuss the most common toolkits:
Prototype/Scriptaculous, Dojo, YUI, Ext-
JS and jQuery.

Every toolkit, either in its core or with
closely associated packages, provides
support for a variety of things inherited
from desktop applications that are not
easy to do in JavaScript and which are es-
pecially difficult to do in a cross-browser
compatible fashion. Drag-n-drop, tool-
tips, status bars, windows, modal dialogs,
and progress bars are present in all of the
toolkits. Additionally, most provide a set
of widgets like tree controls, combo
boxes, sliders, rich text editors and other
controls inherited from their desktop pre-
decessors. It's not entirely clear that
these controls actually make people more
comfortable on the Web. Our experience
has been that most people have adapted
to the dumbed-down interface of the web
browser and are often confused by addi-
tional controls.

One important, but not obvious, consid-
eration is that JavaScript does not sup-
port the class-based inheritance model
(http://en.wikipedia.org/wiki/Class-bas
ed_programming) that is familiar to most
software developers. It instead uses a
“prototype” based inheritance. Many of
the toolkits provide a mechanism for
class-based inheritance as a way to make
development more attractive.

1. Prototype: Prototype is the oldest
framework, and thanks to its close asso-
ciation with Ruby on Rails, it is a widely
adopted rapid application develop-
ment (RAD, http://en.wikipedia.org/
wiki/Rapid_application_development)
framework for the web. Developed by
Sam Stephenson in 2004, it's probably
the best-developed class-based system.
Scriptaculous is a separate library, built
on Prototype, that provides effects and

animation. Scriptaculous has gained a
reputation for being bloated, and that
caused Diggto abandon both Scripta-
culous and Prototype in favor of jQuery.

2.Dojo: Dojo (http://en.wikipedia.org/
wiki/Dojo_Toolkit), unlike the rest of
the toolkits mentioned, provides a rich
text editor, something for which there
is a great demand. It has also com-
pleted a number of partnerships,
most notably with Zend. Zend is a lead-
ing framework for PHP development,
supported by IBM and SUN, and they
plan to integrate Dojo in their next ver-
sion. In addition to the usual collection
of widgets, Dojo provides extensions to
do box and line charts.

3.YUIL: YUI (http://en.wikipedia.org/

wiki/Yahoo!_UI_Library) is the kitchen
sink of JS toolkits, chock full of widgets
and gadgets, with Yahoo as its corpor-
ate backer. There isa much smaller
core available, countering any accusa-
tion of bloatedness. Overall, it has the
richest set of widgets, and the big com-
pany support is a decisive factor for
many websites. YUI also includes a
useful JavaScript compressor that we
use at tripadvisor.com to decrease
download times and to save bandwidth.

4, Ext-JS: Ext-JS (http://en.wikipedia.org/
wiki/Ext]S) has a dual commercial/ GPL
license which has spurred some
licensing issues that have impaired its
adoption. Most JS toolkits use the LGPL
or MIT license, which has allowed them
to be used without developers having
to open source their server side code.
Ext-JS provides a rich set of widgets,
and provides integration with Google
Web Toolkit (http://code.google.com/
webtoolkit/), a server-side framework
that generates JavaScript.

http://en.wikipedia.org/wiki/Class-based_programming
http://en.wikipedia.org/wiki/Rapid_application_development
http://en.wikipedia.org/wiki/Dojo_Toolkit
http://en.wikipedia.org/wiki/Yahoo!_UI_Library
http://tripadvisor.com
http://en.wikipedia.org/wiki/ExtJS
http://code.google.com/webtoolkit/

USING JAVASCRIPT TOOLKITS TO CREATE RIAS

5.jQuery: jQuery (http://en.wikipedia.
org/wiki/Jquery) has the usual widgets
available under the rubric jQuery UI
(http://jqueryui.com). It's probably
best known for its terseness, a result of
a technique called “chaining” that
makes for very concise code. This is
important for JavaScript which almost
always has to be transferred froma
server to a client machine over the
Internet. Its greatest strength, chain-
ing, is also the main point of criticism
as jQuery code looks completely differ-
ent from JavaScript code. It has
benefited recently from a close associ-
ation with the Mozilla Foundation;
John Resig, the initial developer, is
employed there.

Competing with Commercial
Alternatives

One of the interesting dynamics at play in
the Internet industry and the continuing
evolution of RIAs is the ever present rhet-
oric pushing the latest proprietary altern-
atives. The toolkits described above have
been instrumental in ensuring that Java
Script can compete, even in a world with
many different browsers, each with their
own quirks and bugs. Ten years ago it
would have been hard to argue that the
number of browsers in use would in-
crease. Now, it's a given, with Opera,
Chrome, and Safari all holding their own
against Firefox and Internet Explorer.
This has presented challenges for Java
Script developers and a lot of great work
by countless individuals has ensured that
the open source alternatives continue to
be preeminent.

The canonical cool application for Java
Script is still Gmail, and its success has
demonstrated that useful and usable ap-
plications can be done in pure JS.

19

Other well known applications include
Zimbra (http://en.wikipedia.org/wiki/
Zimbra) and Zoho Applications (http://
en.wikipedia.org/wiki/Zoho). Beyond
the obvious rivalry of JavaScript vs. Flash,
the continuing success of JavaScript in
developing RIAs also represents another
success for open source. As the adoption
of browser-based applications increases,
the reliance on many different types of
proprietary desktop applications de-
creases. This is good news since the adop-
tion of open source browsers continues
to be on the rise.

Concluding Remarks

One possible concern with the use of
JavaScript, Ajax and rich JavaScript ap-
plications is the fact that the original
XMLHTTP protocol is itself a proprietary
protocol owned by Microsoft which was
originally released as an ActiveX object.
Other vendors have implemented their
own versions of the protocol and there
are other ways to do the dynamic up-
dates that XMLHTTP provides, should Mi-
crosoft ever decide to be less benign
about the protocol.

JavaScript has a clear lead in the next big
frontier in applications, that of mobile de-
velopment. In particular, the iPhone
doesn't support any of the proprietary al-
ternatives, but it does support JavaScript.
Most applications, including our own
JavaScript heavy flights product, work
quite well in the iPhone version of Safari.
Flash and Silverlight don't, at least not
yet.

Our recent meta search application
turned out to be quite large and challen-
ging, but the use of JavaScript and jQuery
turned out to be a key contributor to its
apparent success.

http://en.wikipedia.org/wiki/Jquery
http://jqueryui.com/
http://en.wikipedia.org/wiki/Zimbra
http://en.wikipedia.org/wiki/Zoho

USING JAVASCRIPT TOOLKITS TO CREATE RIAS

It still took a great deal of effort to make it
perform adequately while working across
all major browsers. As most web de-
velopers know, the weak point for these
applications continues to be the large in-
stalled base of Internet Explorer 6.0. The
DOM and JavaScript implementation in
that browser has a huge number of bugs,
and requires many workarounds and of-
ten the foregoing of best practices. We
can only hope that the recent launch of
Internet Explorer 8.0 will prompt at least
some people to upgrade.

Owen Byrne is currently Senior Manager
of Travelpod Labs. He is probably best
known as the co-founder and original de-
veloper of digg.com where he was the
primary technical decision maker for
most of its period of growth, from incep-
tion to the Series A financing. Owen holds
three degrees from Saint Mary's University
and Dalhousie University, as well as an
ABD from the University of Manitoba. He
has over 20 years experience in software
development and managerial roles includ-
ing a brief stint as a university professor.

20

Recommended Resources

RIApedia
http://www.riapedia.com/

The Business Benefits of Rich Internet
Applications for Enterprises
http://www.ashorten.com/wp-content/
uploads/2009/01/Adobe_RIA_
Enterprise_Web0109.pdf

Presentations from the Business of APIs
Conference
http://www.apiconference.com/
presentations/

How To Roll Out An Open API
http://radar.oreilly.com/2005/05/how-
to-roll-out-an-open-api.html

How do I monetize an API?
http://blog.mashery.com/2008/06/18/
how-do-i-monetize-an-api/

http://www.riapedia.com/
http://www.ashorten.com/wp-content/uploads/2009/01/Adobe_RIA_Enterprise_Web0109.pdf
http://www.apiconference.com/presentations/
http://radar.oreilly.com/2005/05/how-to-roll-out-an-open-api.html
http://blog.mashery.com/2008/06/18/how-do-i-monetize-an-api/

MEASURING MODULARITY IN OPEN SOURCE CODE BASES

“... the act of properly designing a complex
system characterized by a modular archi-
tecture is not a trivial task. On the con-
trary, modularity bears high costs: careful
modularization is a cognitive challenging
activity, since it translates in devising a de-
composition of the whole system in
autonomous subparts whose interdepend-
encies are reduced to the minimum.
Moreover, failure to perfectly modularize
an architecture results in costs of dealing
with fine tuning and tempering activities
aimed at solving unexpected and unfore-
seen interdependencies.”
http://econpapers.repec.org/
paper/trtrockwp/020.htm

Modularity of an open source software
(OSS) code base has been associated with
growth of the software development com-
munity, the incentives for voluntary code
contribution, and a reduction in the num-
ber of users who take code without con-
tributing back to the community. As a
theoretical construct, modularity links
OSS to other domains of research, includ-
ing organization theory, the economics of
industry structure, and new product de-
velopment. However, measuring the
modularity of an OSS design has proven
difficult, especially for large and complex
systems.

In this article, we describe some prelimin-
ary results of recent research at Carleton
University that examines the evolving
modularity of large-scale software sys-
tems. We describe a measurement meth-
od and a new modularity metric for
comparing code bases of different size,
introduce an open source toolkit that im-
plements this method and metric, and
provide an analysis of the evolution of
the Apache Tomcat application server as
an illustrative example of the insights
gained from this approach. Although
these results are preliminary, they open
the door to further cross-discipline

21

research that quantitatively links the con-
cerns of business managers, entrepren-
eurs, policy-makers, and open source
software developers.

Modularity and Design Structure
Matrices

In "Design Rules: The Power of Modular-
ity" (http://mitpress.mit.edu/catalog/
item/default.asp?tid=3606&ttype=2),
Baldwin and Clark present a major study
of the role of modularity in the evolution
of the computer industry. They argue that
modularity is an important and
fundamental connection between at least
three different systems: i) the engineering
design; ii) the organization of the people
who implement and maintain the design;
and iii) the network of companies
forming the economic system around the
design. Each system constrains and
enables the other two. Other researchers
have since built on and extended this
work, which in its original form did not
directly address OSS.

According to Baldwin and Clark, a
module is a unit whose structural ele-
ments are strongly connected among
each other and relatively weakly connec-
ted to elements in other units. Just as
there are degrees of connectedness, there
are degrees of modularity. This motivates
the interest in metrics and techniques to
measure the modularity of the structures
comprising an artifact. In a widely-cited
2006 paper titled "The Architecture of
Participation: Does Code Architecture
Mitigate Free Riding in the Open Source
Development Model?" (http://www.
people.hbs.edu/cbaldwin/DR2/Baldwin
ArchPartAll.pdf), Baldwin and Clark
provide a theoretical argument that a
more modular open source code base
will attract more voluntary contributions
and have less free riding of non-contrib-
utors than one that is less modular.

http://econpapers.repec.org/paper/trtrockwp/020.htm
http://mitpress.mit.edu/catalog/item/default.asp?tid=3606&ttype=2
http://www.people.hbs.edu/cbaldwin/DR2/BaldwinArchPartAll.pdf

MEASURING MODULARITY IN OPEN SOURCE CODE BASES

When the complexity of one of the ele-
ments crosses a certain threshold, that
complexity can be isolated by defining a
separate abstraction that has a simple in-
terface. This abstraction hides the com-
plexity of the element and the interface
indicates how the element interacts with
the larger system. Modularity decreases
complexity in several ways. In particular,
it allows designers to focus on individual
modules rather than the whole integrated
artifact. This radically changes the design
process and allows for work on individual
modules to be parallelized.

The Design Structure Matrix (DSM) is an
analysis tool for mapping complex sys-
tems. It provides a compact representa-
tion of a complex system that visualizes
the interdependencies between system
elements. According to Baldwin and
Clark, “it is a powerful analytic device, be-
cause by using it we can see with clarity
how the physical and logical structure of
an artifact gets transmitted to its design
process, and from there to the organiza-
tion of individuals who will carry the pro-
cess forward.”

A DSM is a square matrix with off-diagon-
al cells indicating dependencies between
the system elements. A value in the cell at
row i and column j means that the ele-
ment at position i depends in some way
on the element at position j. For example,
the design elements could be Java classes
and dependencies would be references
between classes. This information can be
extracted automatically from the code
base. Clustering reorganizes the DSM ele-
ments to more clearly visualize and ana-
lyze dependency relationships.

The details of how this analysis is conduc-
ted are quite technical, and it builds on
prior research in several related domains.
Alan MacCormack, John Rusnak, and oth-
er colleagues at Harvard Business School
recently published two important ad-
vances.

22

In a 2006 article titled "Exploring the
Structure of Complex Software Designs:
An Empirical Study of Open Source
and Proprietary Code" (http://open
source.mit.edu/papers/maccormack
rusnakbaldwin.pdf), they employed
DSMs to empirically compare the design
structures of two software products: the
Linux kernel and the Mozilla web
browser. They proposed a clustering al-
gorithm to measure dependencies.
However, their comparison critically de-
pended on selecting versions of the sys-
tems with a similar number of source
files which were the elements in the
DSM. One motivation of our work was to
remove this restriction, and to allow the
comparison of code bases of different
size.

A follow-on article in 2008 examines the
evolution over time of two software
products: the open source Apache Tom-
cat application server and an unnamed
closed source commercial server
product. A coarse metric is introduced
that represents the change ratio between
the consecutive versions in the product
evolution. The authors conclude that
DSMs and design rule theory can explain
how real-world modularization activities
allow for different rates of evolution to oc-
cur in different modules, and create stra-
tegic advantage for a firm.

Measuring Design Evolution

Our method for examining the evolving
modularity of large-scale software sys-
tems implemented in Java builds on the
discussed DSM methods and algorithms,
but differs from past work in several as-
pects. As with these approaches, we: i)
automate dependency extraction from
the software code base; ii) employ design
structure matrices for visualization and
analysis of dependency information; and

http://opensource.mit.edu/papers/maccormackrusnakbaldwin.pdf

MEASURING MODULARITY IN OPEN SOURCE CODE BASES

iii) compute cost metrics as measures of
modularity. We differ from the earlier
work in: i) that our unit of analysis uses
Java classes rather than C source files;
and ii) our use of the relative clustered
cost metric.

Our design elements are Java classes and
our dependencies are references between
classes, whether by inheritance, declared
fields, or method calls. Because depend-
encies between Java classes can be extrac-
ted from the compiled code of a software
system, we need only obtain binary distri-
butions of the selected versions. The
steps of our method are as follows:

1. Select the versions to be analyzed and
obtain their binary distributions.

2. For each version, extract the depend-
ency information from the compiled
code.

3. Create DSM instances and extract cost
metrics.

We implemented three modularity met-
rics:

1. Propagation cost: measures the extent
to which a change in one element
impacts other elements. Itis a repres-
entation of the degree of coupling
without consideration of the proximity
between elements.

2. Clustered cost: a more sophisticated
metric that assigns different costs to
dependencies based on the locations of
elements within clusters. It has an
important limitation in that it can only
be used to compare DSMs of similar
sizes.

3. Relative clustered cost: (our contribu-
tion) extends the clustered cost metric
to compare DSMs of different sizes,
avoiding the limitation of the clustered
cost metric.

23

More formal definitions of these metrics
and details of their implementations will
be seen in our upcoming presentation
"Design Evolution of an Open Source Pro-
ject Using an Improved Modularity Met-
ric" (http://0ss2009.org/index.php?id=
preliminary program.htm).

Evolving Modularity of Tomcat

We used our method to study the
evolving code base of an open source sys-
tem, the Apache Tomcat application serv-
er developed and maintained by the
Apache Software Foundation (http://
apache.org). Tomcat is implemented in
Java, and has two major distinct function-
al modules: the Tomcat-main server core
and Jasper, a separate module that pro-
cesses Java Server Pages. Tomcat-main
and Jasper are linked only through the
J2EE API (http://en.wikipedia.org/wiki/
J2ee).

Over the ten-year period between 1999
and 2008, four major versions of Apache
Tomcat were released:

» Apache Tomcat 3.x is based on the
original implementations of the Servlet
2.2 and JSP 1.1 specifications donated
by Sun Microsystems

» Apache Tomcat 4.x implements the
Servlet 2.3 and JSP 1.2 specifications
and Catalina, a new servlet container
based on a different architecture

» Apache Tomcat 5.x implements the
Servlet 2.4 and JSP 2.0 specifications

» Apache Tomcat 6.x implements the
Servlet 2.5 and JSP 2.1 specifications

Since support for specific standards spe-
cifications is of primary importance to
Tomcat users, major version numbers for
Tomcat mirror the versions of the Servlet
and JSP specifications that Tomcat sup-
ports.

http://oss2009.org/index.php?id=preliminary_program.htm
http://en.wikipedia.org/wiki/J2ee
http://apache.org

MEASURING MODULARITY IN OPEN SOURCE CODE BASES

However, a change in major version num-
bers does not necessarily correspond to
major changes in the structure of the
code base. Thus, when we selected the
versions of Tomcat for our analysis, we
identified significant architectural events
in the evolution of the Tomcat code base,
such as major changes to the architecture
to improve performance, or the introduc-
tion of the Catalina servlet container.

For each version, we examined the Tom-
cat-main and Jasper modules both separ-
ately and in combination. For each
analysis, we computed the number of
classes, number of dependencies,
propagation cost, number of vertical
busses, number of clusters, clustered
cost, and relative clustered cost.

Figure 1: Propagation Cost of Tomcat-main

The number of classes nearly tripled
between version 3.0 and 6.0.16. This is
clear evidence of the need for modularity
measures that permit comparisons of
code bases of different size.

Initially, we expected the modularity of
Tomcat to increase throughout the evolu-
tion of the product. The rationale for this
expectation was that as a system evolves,
its structure would be continually ex-
amined by developers. Specifically, we ex-
pected that architectural improvements
would also lead to increased modularity.
For example, when Tomcat 4.x intro-
duced a new implementation of the ser-
vlet container based on a new
architecture (Catalina), we expected the
new architecture to be more modular be-
cause it was built from the ground up for
flexibility and performance.

Propagation Cost

24

MEASURING MODULARITY IN OPEN SOURCE CODE BASES

Figure 2: Relative Clustered Cost of Tomcat-main

Relative Clustered Cost

0.005
0.004
0,003

0.002

0.001

L
Ao
—
[—
LS
r2
§ B

However, as seen in Figures 1 and 2, we
observe that the propagation costs for
Tomcat 3.3.2 and 4.0.6 are 9.6% and
14.6%, respectively, and the relative
clustered costs are 0.0031 and 0.0035.
Both metrics suggest that version 4.0.6 is
less modular than version 3.3.2, the op-
posite of what we expected to find. Ver-
sion 3.3.2 is the latest production release
of Tomcat 3.x which finished the refactor-
ing effort and introduced a more modu-
lar design by allowing the addition and
removal of modules that control the exe-
cution of servlet requests. Version 4.0.6 is
the final release of Tomcat 4.x that intro-
duced the Catalina servlet container. A
similar pattern occurred when major ar-
chitectural changes were made to the
Jasper subsystem at other points in time.

25

»
s
M
L)

r»
>
-l

F—

-

- N

A closer examination of the events sur-
rounding these spikes in propagation
cost and relative clustered cost suggests
that each decrease in modularity was pre-
cipitated by a major architectural or im-
plementation change. For all other
releases, whether major versions or incre-
mental releases, the code became in-
creasingly more modular. Interestingly,
each spike is immediately followed by an
increase in modularity. In fact, in each
case, the increase in modularity of the
consecutive version more than com-
pensated for the previous decrease.

Our data is not conclusive on why this
pattern occurred, but we offer a plausible
explanation. Once new functionality is
initially deployed and working, focus

MEASURING MODULARITY IN OPEN SOURCE CODE BASES

shifts. Developers revisit the design and
perform refactoring and cleanup activit-
ies which represent changes to the struc-
ture of the system, but not to its
behaviour. Increased understanding and
experience gained through the original
implementation permits developers to
more easily restructure the existing code
into a more modular design. The result is
a significant increase in modularity that
compensates for the original decrease in
the previous version.

To capture these observations, we pro-
pose three propositions that can guide fu-
ture research on the evolution of
modularity of software systems:

Proposition 1: major architectural and
implementation changes cause the mod-
ularity of a software system to decrease at
first.

Proposition 2: major changes are fol-
lowed by periods of refactoring and
cleanup activities, which cause the modu-
larity of the software system to increase
again.

Proposition 3: the increase in modularity
as a result of refactoring and cleanup
activities more than offsets the decrease
in modularity due to a major change.

Conclusion

This paper reported on recent advances
towards understanding the evolution of
large OSS systems, and proposed an im-
proved modularity metric based on
DSMs that allows the comparison of code
bases of different size. Our research
provides initial evidence that as a large
software system evolves, major architec-
tural changes, at first, lead to an increase
in modularity, but are followed by refact-
orings and cleanup activities which lead
to a subsequent increase in modularity.

26

Although these results are preliminary,
they are part of the larger research pro-
gram in which we hope to provide deeper
insights into the connections between
technical, organizational, and economic
systems.

Steven Muegge is a faculty member of the
Department of Systems and Computer En-
gineering at Carleton University, Ottawa,
Canada. Professor Muegge teaches within
the Technology Innovation Management
program. His current research interests in-
clude open source software, open innova-
tion, and open source ecosystems.

Roberto Milev completed an M.Eng. de-
gree in Technology Innovation Manage-
ment in 2008. As part of his research into
open source software, he derived the relat-
ive clustered cost metric and developed
the jDSM open source toolset for comput-
ing DSMs and modularity metrics. He is
currently working as a manager for a soft-
ware development company.

Recommended Resources

Java DSM library
http://jdsm.sourceforge.net/

DSM Home Page
http://www.dsmweb.org/

http://jdsm.sourceforge.net
http://www.dsmweb.org

TORYS TECHNOLOGY LAW SPEAKER SERIES

"Open source software relies upon copy-
right law: both its protections, and excep-
tions."

David Fewer, CIPPIC.ca

The University of Ottawa, Faculty of Law
is Canada’s premiere legal program in law
and technology. The Torys Technology
Law Speaker Series (http://web5.uottawa

.ca/techlaw/en/events/torys-technology-

law-speaker-series/) brings prominent
speakers from around the world to dis-
cuss current topics in law and technology.

A new approach to open source software
(OSS) was presented to students and fac-
ulty at the University of Ottawa on March
11, 2009. Michael Madison, Associate
Dean for Research and Professor of Law
at the University of Pittsburgh School of
Law, presented “Open Source Licenses
and the Boundaries of Knowledge Pro-
duction”. Prof. Madison spent time out-
lining and answering questions on a
novel interpretation of copyright in the
age of OSS. Using historical examples, he
called for the courts to incorporate a “spa-
tial framework” to deal with open source
licenses. His approach was particularly
relevant and timely in light of a recent
opinion from the US Court of Appeals for
the Federal Circuit, Jacobsen v. Katzer
(http://en.wikipedia.org/wiki/Jacobsen_
v._Katzer).

Lessons Learned from Jacobsen v. Katzer

The presentation began with a detailed
case history in the fight between Robert
Jacobsen, manager of an OSS project hos-
ted on SourceForge called the Java Model
Railroad Interface (JMRI, http://source

forge.net/projects/jmri/), and Matthew
Katzer and Kamind Associates, Inc. who
collectively develop commercial software
products for the model train industry.
Prof. Jacobsen, among other things,
sought a declaration from the courts re-
cognizing that Mr. Katzer's use of the
JRMI software was in violation of the

27

open source license offered by the pro-
ject. A preliminary injunction was then
sought under copyright infringement.
The appellate court decision held that
the Artistic License (http://opensource.
org/licenses/artistic-license-2.0.php)
granted by the JMRI to users of the model
train software, and, more generally, OSS
licenses, are enforceable. These licenses
are set conditions, rather than merely
covenants, regarding the use of the copy-
righted work. As conditions, a breach of
the license may terminate the contract,
allowing the copyright holder to sue for
infringement.

Although the Court of Appeal ultimately
remanded the case back to the district
court, two important principles were set
forth in the judgment. First, the decision
recognized that work can still be protec-
ted by copyright even when given away
for free. A breach in the conditions in the
license makes a user susceptible to copy-
right infringement as he or she can no
longer rely on the license against such
claims. Secondly, the court took a purpos-
ive approach in legitimizing the nature of
the open source collective. It recognized
that the OSS movement’s growth flowed
from the sense of community and credit
one gets through contribution and not
from common notions of monetary gain.
According to the court, “[tlhese restric-
tions were both clear and necessary to ac-
complish the objectives of the open
source licensing collaboration.”

In drawing attention to Jacobsen, Prof.
Madison noted that the court’s opinion
was neither novel nor new. He used a
number of historical examples to illus-
trate how courts have been inconsistent,
though tending towards not upholding re-
straints, in deciding whether "the coven-
ant runs with the code." He used half a
dozen examples where "equitable ser-
vitudes on chattel" strive to create an ob-
ligation to either do something or refrain
from doing something through simple

http://web5.uottawa.ca/techlaw/en/events/torys-technology-law-speaker-series/
http://en.wikipedia.org/wiki/Jacobsen_v._Katzer
http://sourceforge.net/projects/jmri/
http://www.opensource.org/licenses/artistic-license-2.0.php

TORYS TECHNOLOGY LAW SPEAKER SERIES

possession of the object. These equitable
servitudes try to go beyond mere con-
tract law by stating that the property right
in an object is constrained by the obliga-
tion attached. In the case of Jacobsen, a
condition attached by the Artistic license
was attribution to the JRMI. According to
the examples cited in the US, a ‘single
use’ stamp on a cotton tie was deemed
enforceable, but a stamp of ‘not for re-
sale’ on a record/CD/blue-ray disc was
not (http://madisonian.net/2008/04/30/
equitable-servitudes-in-packaging and
http://en.wikipedia.org/wiki/Post-sale_
restraint).

In bringing up these examples, Prof.
Madison sought to highlight the special,
and often unpredictable, arena where
OSS exists. There is no single universally
accepted criterion for when a covenant
becomes a condition. Sometimes it is
based on patent law, other times on copy-
right, customary use or practice. This in-
congruity and confusion in determining
an object’s status is exposed in the altern-
ate decisions from the trial and appeal
court in Jacobsen. In remanding the case
and sending it back to the lower court,
the appeal court recognized that a condi-
tion such as the attribution guarantee in
the Artistic License was enforceable on
the license holder.

Licensing in a Spatial Framework

Prof. Madison believes it is time for the
courts to recognize a new framework for
this type of litigation. Instead of using a
linear temporal approach to decide if the
equitable servitude meets certain criteria
or fits within a certain box, a court should
base its decision on the purpose of the in-
troduced limitation. Instead of relying on
the structure or trying to massage the ser-
vitude into an ‘if-then narrative, Prof.
Madison believes the court should take a
more abstract approach in applying a
spatial framework that looks to the pur-
pose of the condition or license.

28

OSS relies on copyright and the condi-
tions set forth in the licensing agreement
are necessary to uphold the open source
paradigm. In order for users to contribute
code and not incorporate openly access-
ible software into their own projects free
of payment or attribution, OSS projects
must turn to copyright law. Although the
conditions may not be economic, they
are vital in order to encourage and main-
tain the integrity of the social alliance.

While open source licenses can fit into
the well-known temporal framework,
Prof. Madison suggests that recognizing a
spatial framework is better suited. As re-
cognized by the appellate court in Jacob-
sen, the license utilized in open source
projects enables open source users to
come together from all over the world.
These communities utilize the license to
encourage different models of creation as
well as different types of consumption, re-
use, and development. Open source flour-
ishes upon these ideals.

Prof. Madison states that a spatial ap-
proach in recognizing the importance of
the open source licenses better reflects
the community’s goals. Such an approach
allows open source users to have better
recourse against infringers. Potential rem-
edies would also be affected. Normally,
courts are very reluctant to grant non-
economic relief. Although it may create
problems in other areas, Prof. Madison
believes a spatial framework would find
courts more susceptible to injunctions
that recognize the non-economic import-
ance of open source licenses.

Finally, Prof. Madison discussed the spa-
tial model finding more traction in open
source licensing when acting as the pro-
verbial shield rather than sword. He cited
the GPLv3 example of license termina-
tion when a user applies to patent a pro-
ject incorporating open source code. In
such situations, the GPLv3 explicitly ter-
minates the user’s license and makes him

http://madisonian.net/2008/04/30/equitable-servitudes-in-packaging/
http://en.wikipedia.org/wiki/Post-sale_restraint

TORY TECHNOLOGY LAW SPEAKER SERIES

or her liable for copyright infringement.
Such a defensive strategy protects the
open source community from claims of
patent infringement and explicitly uses
the spatial metaphor to set up a protect-
ive zone around the open source project.

Conclusion

Prof. Madison’s approach is still being de-
veloped and increased discourse and re-
flection will invariably occur as open
source licenses are further utilized and
tested by courts. Whether or not a spatial
model takes hold in a post-Jacobsen
world is unknown, but open source users
should take heart that the US appellate
court upheld the enforceability of OSS li-
censes and the importance of copyright
to building OSS communities.

Byron Thom is finishing his law degree at
the University of Ottawa, Faculty of Law
with a concentration in law and techno-
logy. His interests vary from new ap-
proaches to intellectual property law to
how technology may save the world from
global warming. Byron was also a parti-
cipant in Canadas first class on the Law
of Robotics and was at the table when
Kerr’s Postulate was formed.

29

Recommended Resources

Michael Madison's Law and Tech Blog
http://madisonian.net/

Law and Technology Program at the
University of Ottawa
http://www.commonlaw.uottawa.ca/tech

Video of Lecture
http://www.fosslc.org/drupal/node/320

May 4-6
MCeTech
Ottawa, ON

The 4th International MCETECH Confer-
ence on e-Technologies aims at bringing
together researchers, decision makers,
and practitioners interested in exploring
the many facets of Internet applications
and technologies.

http://www.mcetech.org/

May 6-9
Libre Graphics
Montreal, QC

LGM 2009 is the fourth annual worldwide
meeting of teams developing open
source graphics applications. Designers,
graphic artists and anyone involved in
print production and/or web develop-
ment are cordially invited to attend and
meet the developers one to one.

http://libregraphicsmeeting.org/2009/

May 8
WordCamp
Toronto, ON

WordCamp is a conference type of event
that focuses squarely on everything Word-
Press. Everyone from casual end users all
the way up to core developers show up to
these events. These events are usually
highlighted by speeches or keynotes by
various people.

http://phug.ca/wordcamptoronto

30

UPCOMING EVENTS

May 8-9
BSDCan
Ottawa, ON

BSDCan has established itself as the tech-
nical conference for people working on
and with BSD based operating systems
and related projects. The organizers have
found a formula that appeals to a wide
range of people from extreme novices to
advanced developers.

http://www.bsdcan.org

May 10-13
CNIE International Conference
Ottawa, ON

With an expected attendance of over 400
national and international delegates
working in the fields of educational tech-
nology, health education, K-12 educa-
tion, multi-media design and distance
learning, the 2009 CNIE International
Conference offers a unique opportunity
for learning, networking and idea ex-
change. Join colleagues from across the
education spectrum discussing, debating
and exploring the integration of learning
and technology.

http://www.learningconference.ca/
cnie2009

http://www.mcetech.org/
http://www.libregraphicsmeeting.org/2009/
http://phug.ca/wordcamptoronto
http://www.bsdcan.org/
http://www.learningconference.ca/cnie2009/index.php?option=com_frontpage&Itemid=1

May 13-15
SummerCamp
Ottawa, ON

This event will bring together industry,
academia, government, and community
to learn about open source and to en-
courage cross pollination of ideas and tal-
ent.

http://www.fosslc.org/drupal/summer
camp2009

May 16-17
MSR Mining Challenge
Vancouver, BC

The MSR Mining Challenge brings togeth-
er researchers and practitioners inter-
ested in applying, comparing, and
challenging their mining tools and ap-
proaches on software repositories for
open source projects. This year's chal-
lenge examines the GNOME Desktop
Suite of projects and how they interact.

http://msr.uwaterloo.ca/msr2009/
challenge/index.html

May 16-24

ICSE

Vancouver, BC

ICSE provides a forum for researchers,
practitioners and educators to present
and discuss the most recent innovations,
trends, experiences and concerns in the

field of software engineering.

http://www.cs.uoregon.edu/events/
icse2009/home/

31

UPCOMING EVENTS

May 17-22
Open Source Programs for Mac
BC Public School System

In this knowWEEK we will look at open
source programs for Mac that can be
used for browsing, video podcasting, in-
stant messaging, emails, podcasting,
video playback, word processing/office
suites, sound recording, publishing, as
well as others. We will also look at ways
that you can use these tools in your
classroom and share some examples of
how teachers are currently using these in
classrooms.

http://knowschools.ca/moodle/mod/
book/view.php?id=1228&chapterid=389

May 21-22
PGCon
Ottawa, ON

PGCon is an annual conference for users
and developers of PostgreSQL, a leading
relational database, which just happens
to be open source. PGCon is the place to
meet, discuss, build relationships, learn
valuable insights, and generally chat
about the work you are doing with Postgr-
eSQL. If you want to learn why so many
people are moving to PostgreSQL, PGCon
will be the place to find out why. Whether
you are a casual user or you've been
working with PostgreSQL for years, PG-
Con will have something for you.

http://www.pgcon.org/2008/

http://www.fosslc.org/drupal/summercamp2009
http://msr.uwaterloo.ca/msr2009/challenge/index.html
http://www.cs.uoregon.edu/events/icse2009/home/
http://knowschools.ca/moodle/mod/book/view.php?id=1228&chapterid=389
http://www.pgcon.org/2008/

May 25-27
SMARTlinkages 2009
Kelowna, BC

SMARTlinkages brings together hundreds
of industry leaders, government leaders,
research leaders and students to
showcase Canada's ingenuity, innovation
and leadership in information and
communications technology. The annual
conference is a dynamic venue where
people interact, companies meet brilliant
new employees, where our best and
brightest students showcase their talents
and ideas, where government executives
take the pulse of innovation, and where
deals are done.

http://www.aigicrvis.ca/program2009/
SMARTLinkages2009/index.html

March 18

The Law Society of British Columbia
Goes Live with Evergreen

Vancouver, BC

The Law Society of British Columbia has
gone live with the Evergreen open source
library automation software. Jeremy
Buhler, a graduate student from the
School of Library, Archival and Informa-
tion Studies at the University of British
Columbia, did most of the work develop-
ing the main page and migrating data.
The Law Society of British Columbia is
the governing body of the legal profes-
sion in BC.

http://www.esilibrary.com/esi/news
item.php?id=91

32

UPCOMING EVENTS
May 29
DemTech
Montreal, QC

DemTech 2009 will showcase -cutting
edge projects that use information tech-
nology to encourage citizen access and
foster democratic participation. De-
mTech is a pre-conference of the 2009 An-
nual Conference and Trade Show of the
Canadian Library Association, sponsored
by Apathy is Boring, VisibleGovern-
ment.ca and members of the CivicAc-
cess.ca community.

http://demtech.ca/

NEWSBYTES

March 23
Eclipse Announces First Release of
Swordfish
Ottawa, ON
The Eclipse Foundation announced

today the first release of Swordfish, a
next-generation enterprise service bus
that provides the flexibility and extensibil-
ity required by enterprises to successfully
deploy a service-oriented architecture
strategy. Swordfish is based on the OSGi
standard and builds upon successful
open source projects, including Eclipse
Equinox and Apache ServiceMix.

http://www.eclipse.org/org/press-
release/20090323_swordfish.php

ISSUE SPONSOR

General Chair
Michael Weiss
Carleton University
weiss@sce.carleton.ca

PC Co-Chairs
Gilbert Babin

HEC Montréal
Peter Kropf

Université de Neuchdtel

Program Committee
Kamel Adi, Canada

Esma Aimeur, Canada

Daniel Amyot, Canada
Gilbert Babin, Canada

Tony Bailetti, Canada

Sarita Bassil, USA

Morad Benyoucef, Canada
Vincenzo D'Andrea, Italy
Peter Emmel, Germany
Michael Franz, USA

Jaap Gordijn, The Netherlands
Ruediger Grimm, Germany
Martin Hepp, Germany

Paul Hofmann, USA

Dietmar Jannach, Germany
Gregory Kersten, Canada
Ferhat Khendek, Canada
Peter Kropf, Switzerland
Craig Kuziemsky, Canada
Anne-Frangoise Le Meur, France
Luigi Logrippo, Canada
Simone Ludwig, Canada
Hafedh Mili, Canada

Morteza Niktash, Canada
Liam Peyton, Canada

Roy Rada, USA

Christoph Rensing, Germany
Alain Sandoz, Switzerland
Carlo Simon, Germany
Michael Spahn, Germany

Jun Suzuki, USA

Thomas Tran, Canada

Guy Tremblay, Canada

Petko Valtchev, Canada
Marie-Hélene Verrons, France
Michael Weiss, Canada
Yuhong Yan, Canada
Christian Zirpins, UK

Organization

5 Carleton

UNIVERSITY

uOttawa

UQAM HEC MONTREAL
<UNi

Contact

All queries to the Organizing Committee
should be sent to:
weiss(@sce.carleton.ca

For More Information

http://mcetech.org/

CALL FOR PARTICIPATION

m(\ s“g:a q

4t |nt. MCETECH Conference on eTechnologies
4-6 May 2009, Ottawa, Canada

The Internet pervades many of the activities of modern societies and has become the preferred
medium for the delivery of information and services. The successful implementation of Internet
applications, ranging from eBusiness, to eEducation or to eGovernment, is a multi-faceted
problem, involving technological, managerial, economic, and legal issues.

The 4th International MCETECH Conference on e-Technologies aims to bring together
researchers and practitioners interested in exploring the many facets of Internet applications and
technologies. Contributions and presentations focus on original and inter-disciplinary approaches
to these problems and combine technological aspects with economic, managerial, and
organizational aspects.

This year’s conference theme is Innovation in an Open World, and the program is
composed of a keynote presentation, scientific paper presentations, a discussion panel, tutorials,
workshops, and other related events. The conference also includes an industrial track, providing a
forum for practitioners to present problems and case studies that have benefited from, or could
benefit from, Internet technologies in their business.

E-Health Workshop and TIM Lecture Series (May 4)
Two associated events will run on the first days of the conference:
e E-health Workshop: Towards System Interoperability through Process Integration and
Performance Management
o TIM Lecture Series of the Technology Innovation Management program at Carleton University

Tutorials (May 4-6)
For practitioners, eight very interesting tutorials presented by experts will run concurrently with the
workshops and paper presentations:
e Understanding how RFID Technologies & EPC Network Enable Innovative e-Business Models: a
BPR Approach (Ygal Bendavid, Ecole Polytechnique de Montréal)
Social Web, Web Architecture and the OpenSocial Standard (Claude Coulombe, U. de Montréal)
o Interoperability in Healthcare (Norm Archer, McMaster University)
e Open Source Software Licensing Best Practices in a Post Jacobsen v. Katzer World (Thomas
Prowse, Gowlings)
e Putting Zotero to Work: Free and Open Source Research Management for You and Your
Institution (Trevor Owens, George Mason University)
e User Requirements Notation for Business Processes (4/ireza Pourshahid, IBM and U. Ottawa)
e Technology Innovation (Andrew Fisher, Wesley Clover)
Securing Internet Applications - Why SSL is Not Enough (Preeti Raman, Carleton U.)

Scientific and Industrial Paper Sessions (May 5-6)
A total of 27 papers will be presented in eight sessions on:
¢ Inter-Organizational Processes (I and 1I) o Internet-Based Collaborative Work / eEducation
o Service-Oriented Architecture o Industrial Experience
e Open Source and Open Environments o Short Research Contributions
e Security and Trust

Registration

Please visit http://mcetech.org/ for registering to the conference, workshops and tutorials. Early rates
are available until April 3™, 2009, but participants can still register afterwards (and even at the
conference). However, please register early to help the organizers better plan the event.

Ecole de gestion

TELFER

School of Management

Carleton

4 UNIVERSITY

Talent First Network

http://www.talentfirstnetwork.org/ http://www.carleton.ca/ http://www.telfer.uOttawa.ca/

33

The goal of the Open Source Business Re-
source is to provide quality and insightful
content regarding the issues relevant to
the development and commercialization
of open source assets. We believe the best
way to achieve this goal is through the
contributions and feedback from experts
within the business and open source
communities.

OSBR readers are looking for practical
ideas they can apply within their own or-
ganizations. They also appreciate a thor-
ough exploration of the issues and
emerging trends surrounding the busi-
ness of open source. If you are consider-
ing contributing an article, start by asking
yourself:

1. Does my research or experience
provide any new insights or perspect-
ives?

2. Do I often find myself having to
explain this topic when I meet people
as they are unaware of its relevance?

3. Do I believe that I could have saved
myself time, money, and frustration if
someone had explained to me the
issues surrounding this topic?

4. Am I constantly correcting misconcep-
tions regarding this topic?

5. Am I considered to be an expert in this
field? For example, do I present my
research or experience at conferences?

CONTRIBUTE

If your answer is "yes" to any of these
questions, your topic is probably of in-
terest to OSBR readers.

When writing your article, keep the fol-
lowing points in mind:

1. Thoroughly examine the topic; don't
leave the reader wishing for more.

2. Know your central theme and stick to it.

3. Demonstrate your depth of under-
standing for the topic, and that you
have considered its benefits, possible
outcomes, and applicability.

4. Write in third-person formal style.

These guidelines should assist in the pro-
cess of translating your expertise into a
focused article which adds to the know-
ledgable resources available through the
OSBR.

May 2009: Open Source in Government
Guest Editor: James Bowen
University of Ottawa

June 2009: Women in Open Source
Guest Editor: Rikki Kite
LinuxPro Magazine

July 2009: Collaboration
Guest Editor: Stephen Huddart
J. W. McConnell Foundation

August 2009: Tech Entrepreneurship

September 2009: Business Intelligence

Guest Editor: Mike Andrews
SQLPower

34

Formatting Guidelines:

All contributions are to be submitted in
.txt or .rtf format.

Indicate if your submission has been pre-
viously published elsewhere.

Do not send articles shorter than 1500
words or longer than 3000 words.

Begin with a thought-provoking quota-
tion that matches the spirit of the article.
Research the source of your quotation in
order to provide proper attribution.

Include a 2-3 paragraph abstract that
provides the key messages you will be
presenting in the article.

Any quotations or references within the
article text need attribution. The URL to
an online reference is preferred; where no
online reference exists, include the name
of the person and the full title of the art-
icle or book containing the referenced
text. If the reference is from a personal
communication, ensure that you have
permission to use the quote and include
a comment to that effect.

Provide a 2-3 paragraph conclusion that
summarizes the article's main points and
leaves the reader with the most import-
ant messages.

If this is your first article, include a 75-
150 word biography.

If there are any additional texts that
would be of interest to readers, include
their full title and location URL.

Include 5 keywords for the article's
metadata to assist search engines in find-
ing your article.

35

CONTRIBUTE

Copyright:

You retain copyright to your work and
grant the Talent First Network permis-
sion to publish your submission under a
Creative Commons license. The Talent
First Network owns the copyright to the
collection of works comprising each edi-
tion of the OSBR. All content on the
OSBR and Talent First Network websites
is under the Creative Commons
attribution (http://creativecommons.org/
licenses/by/3.0/) license which allows for
commercial and non-commercial redistri-
bution as well as modifications of the
work as long as the copyright holder is at-
tributed.

The OSBR is searching for the right
sponsors. We offer a targeted readership
and hard-to-get content that is relevant
to companies, open source foundations
and educational institutions. You can
become a gold sponsor (one vyear
support) or a theme sponsor (one issue
support). You can also place 1/4, 1/2 o
full page ads.

For pricing details, contact the Editor
dru@osbr.ca).

http://creativecommons.org/licenses/by/3.0

GOLD SPONSORS

Ontario

The Talent First Network pro-
gram is funded in part by the
Government of Ontario.

[7:2] © Carteton

The Technology Innovation Management (TIM) program is a master's
program for experienced engineers. It is offered by Carleton Uni-
versity's Department of Systems and Computer Engineering. The TIM
program offers both a thesis based degree (M.A.Sc.) and a project based
degree (M.Eng.). The M.Eng is offered real-time worldwide. To apply,
please go to: http://www.carleton.ca/tim/sub/apply.html.

36

http://www.carleton.ca/tim/sub/apply.html

